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In this treatise, we describe some of the basic and common deep learning architectures 

amenable to objectives in finance and give heuristic arguments as to which of those 

seems preferable for applications in financial trading. A specific deep architecture, 

allowing information cascades and different feature weights for different market 

environments, is described. Applicable objectives and input feature engineering for this 

architecture are discussed. 

1. Introduction 

Financial trading has been an area highly amenable to data driven decision processes ranging from 

quantitative dashboards to algorithmic trading systems. There is a vast number of accessible data 

available in easy to use formats, including tic data for price processes and order book data, providing 

information on trade intensities and order flows. In addition, alternative data like port activities, degree 

of city illumination, etc. are proving their added value in economic forecasting, enriching the classical 

macro-economic data driven analysis. This makes financial trading a prime target for data driven 

analytics. Indeed, throughout the last decade, the number of algorithmic or data driven 

(“quantamental”) approaches to trade markets has flourished.  

Speed, lack of undesired emotions and computational ease make it attractive to have a fully automated 

trading process, or at least a quantitative information system, aggregating and processing data online. 

Typically, trading systems are constructed by deriving informative features out of the available data 

set and aggregating them into a rule set to determine and drive trading decisions. However, a lot of 

trading systems in use are still based on essentially linear aggregations of simple features.  

Specifically in the highly competitive area of electronic market making, strategies based solely on 

average speed and linear aggregations of order book data are nowadays insufficient to be profitable. 

An edge in the form of predictive capabilities is required, which demands more advance features and 

interactions. Feature engineering and particularly figuring out which features to combine in what way 

and in which circumstances is a tedious task if not automated in some way. 

Machine learning (“ML”) is an ideal candidate for this task. However, after very sobering experiences 

with early ML approaches around the turn of the last century, ML applications in financial trading 

have only slowly moved back into attention. Over the last decade, it has been primarily the shallow 

models (gradient bosting machines, random forests, support vector machines etc.), that were employed 

for simple tasks. With the recent hype in deep learning, the focus has shifted; every quant shop feels 

the urge to at least consider deep learning architectures. While the deep learning approach to finance 

still meets a lot of sceptics, there is hope that this time optimism is better justified. 

Deep Learning in general has seen a tremendous development in recent years with several widely 

reported successes. Ever increasing computational power, the better understanding of relevant aspects 

for improved generalization properties and new techniques have led to faster learning and more robust 

results. While most of the new techniques like stochastic gradient descent, batch normalization, 

dropout, random perturbations, better behaved activations and targets, gradient momentum, skip 
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connections etc. are widely used in all applications, we are skeptical with respect to some of the tricks 

applied specifically to financial trading and will briefly note on these later.  

However, if higher speed and more computational steps in neural networks by stacking up more 

hidden layers is all there is to it, we wouldn’t expect more success in applications to financial trading 

than before. What does make a substantial difference, is that deep architectures are now viewed as 

more than just a single stack of feed forward network layers: The general deep architecture is that of a 

feed forward a-cyclical graph, with each node being a computational unit that can be a network layer, 

a complete network on its own or other computational structure like some classical, shallow 

architecture. With this, a computational exercise can be split up into a number of smaller 

computational tasks, which can add to the overall picture. The deep network becomes a graph, divided 

into a number of interacting subgraphs. Simple examples include the various forms of gated memory 

networks (Long Short Term Memory Networks (“LSTM”), Neural Turing Machines, Differential 

Neural Computer (“DCN”), see [8], [7] and [6] respectively) that have transformed standard recurrent 

neural networks, which were originally notoriously hard to train, into the primary contender in 

sequential modeling, outperforming Hidden Markov Models. Other, more complex examples are some 

of the widely reported successes of deep learning like Alpha Go from DeepMind. 

With most of the research effort still concentrated on areas like visual pattern recognition, speech 

recognition etc., the success of new techniques in these areas has stimulated more interest in financial 

applications. One of the major differences of financial data to data of other areas of application is the 

lack of stationarity of price processes. A key to successful applications of deep learning to financial 

trading will be to find the balance in the interplay between stationarity and information content.  

A number of approaches employing deep learning to financial trading applications have been reported. 

However, most don’t seem to tap the full potential of deep architectures: A lot of them appear to be 

simple, off the shelf stacks of purely feed-forward network layers, without the use of the power of 

more widely distributed computation. Moreover, the input features used are often rather simplistic. 

Besides raw data, well known technical indicators, already in use for several decades by a large 

portion of the trading community, were employed. It is highly unlikely, that a simple stack of network 

layers will unlock a new mapping from such well researched indicators to standard targets, offering 

superior returns. We do not believe that approaches with simple off the shelf architectures, fed by 

standard textbook indicators will be able to produce successful trading systems.  

With today’s view of a model representing a computational graph, feature engineering has been 

expanded to include (or in some nonfinancial applications replaced by) architectural design. A lot of 

problem specific knowledge goes not only into crafting the input and objective of a model, but 

specifically the construction of the graphical structure and the decision on how the overall 

computational problem is best divided into sub-tasks. With all the advances being made, model 

construction still seems to be more of an art, not a science yet. 

In part 2 of this paper, we will briefly list three common, basic deep network architectures: A fully 

connected network, a sequential (1-dim) convolution network and a recurrent network. All of these 

could serve as basic computational devices for financial trading applications that could be embedded 

into a more refined, distributed, deep architecture. We compare those three networks and based on 

preferences of what a network ought to represent, we formulate our preference for one of these 

networks as the basic building block of a distributed computational architecture. 

In part 3, we propose a general deep architecture that reflects trading and modeling preferences, build 

out of several individual networks, each solving a subtask of the overall objective. Specifically, the 
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model will allow differentiating between several environmental settings and enable for different 

weightings of higher order features under different market environments. The proposed architecture 

will also allow cascading information across several time scales. The presentation will only describe 

the input features and the different applications in broad terms and will thus remain abstract, but 

comments on input feature engineering and target construction will be made. The details of a specific 

application or objective are determined by the specific definitions of target and objective functions and 

user-defined input feature engineering. Part 4 will conclude. 

 

2. Comparison of basic deep networks 

We assume we have readily engineered and normalized (not “de-meaned”) a number d of input 

features, represented by a d-dimensional input vector for each trading period for a given trading scale. 

We further assume that the data covers T trading periods or bins, which can be segregated into training 

and validation sets.  

2.1 Fully Connected Deep Neural Nets (“DNN”) 

Motivated by dynamical systems theory to predict states of a dynamical system by a large enough 

embedding, we combine the input vectors for the last w trading periods into a (d times w)-dimensional 

matrix X (i, s) for i = 1 to d, denoting the different features and s = t-w+1 to t, denoting the trading 

periods leading up to time t, with ‘w’ as a pre-defined, fixed embedding dimension. Given that in the 

standard setting the input to a DNN is a vector, we convert the matrix X to an input vector Z for each 

data point t: 

  𝑍𝑡 = [𝑋(1, 𝑡), … , 𝑋(1, 𝑡 − 𝑤 + 1), 𝑋(2, 𝑡), … 𝑋(2, 𝑡 − 𝑤 + 1), … . 𝑋(𝑑, 𝑡, … . , 𝑋(𝑑, 𝑡 − 𝑤 + 1)] ∈

𝑅𝑑𝑤 

s.th.  

𝑍𝑡(𝑘) = 𝑋(𝑖, 𝑡 − 𝑠 + 1), 𝑓𝑜𝑟 𝑘 = 𝑤(𝑖 − 1) + 𝑠, 𝑖 = 1 𝑡𝑜 𝑑, 𝑠 = 1 𝑡𝑜 𝑤  

For the first hidden layer l=1, we have for fixed data point t 

H𝑙=1(𝑗) = 𝜎 (∑ 𝑊𝑙=1(𝑗, 𝑘)𝑍𝑡(𝑘)

𝑑0𝑤

𝑘=1

+ 𝑏𝑙=1(𝑗)) , 𝑗 = 1 𝑡𝑜 𝑑𝑙=1 

Where 𝑑𝑙 is the number of hidden units,  𝑊𝑙 are the transfer matrix and 𝑏𝑙 the bias of the current layer 

that map features of the previous layer linearly into new aggregated features, before de-linearizing 

them by a nonlinear activation function like sigmoid, tanh or Rectified Linear. 

For subsequent layers l > 1, including the final output layer, we have 

H𝑙(𝑗) = 𝜎 (∑ 𝑊𝑙(𝑗, 𝑖)H𝑙−1(𝑖)𝑑𝑙−1
𝑖=1 + 𝑏𝑙(𝑗)) , 𝑗 = 1 𝑡𝑜 𝑑𝑙                 (1) 

Where 𝑑𝑙  denote the number of aggregated features in the l-th layer. We have, for ease of notation, 

used the same activation for each layer and continue doing so in the following. 
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Figure 2: 

 

Figure 1 

Fully connected network (DNN). Only the connection of the time embedding of each input feature and 

only the first two hidden layers are displayed. 

 

2.2 Basics Deep Convolutional Neural Network (“CNN”) 

The archetypical application of CNNs is image recognition, in which each input channel typically has 

2-dimensional input, representing pixel- characteristics in a 2-dimensional grid. The difference to fully 

connected DNNs is that the input connections are localized by a 2-dimensional convolution, which 

restricts the input to each hidden node to a small bounded region, the localization being determined by 

the position of the hidden node. It is very similar to wavelet analysis for image recognition. As 

wavelet analysis, CNNs have also been applied to time series forecasting, where they have distinct 

advantages relative to Recurrent Neural Networks (“RNNs”), the natural choice for times series 

modeling in a network setting. CNNs for time series are reduced to a one dimensional, unidirectional 

convolution along the time axis only. For input matrix X(i,s) as above, the convolution only applies to 

the s direction, not w.r.t. the feature or input channel i. With the understanding, that the input 

corresponds to the 0-th layer, we obtain for the nodes of the hidden layers: 

H𝑙(𝑗, 𝑡) = 𝜎 (∑ 𝑊𝑙(𝑗, 𝑖, 𝑠)𝑠,𝑖 H𝑙−1(𝑖, 𝑡 − 𝑠 + 1) + 𝑏𝑙(𝑗)) , 𝑗 = 1 𝑡𝑜  𝑑𝑙 , 𝑖 = 1 𝑡𝑜 𝑑𝑙−1, 𝑠 = 1 𝑡𝑜 𝑤𝑙−1          

(2) 
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with 𝑑𝑙 as before and 𝑤𝑙 the kernel width or embedding dimension of the l-th layer. 

A CNN thus takes a linear combination of a w-embedding in time of all the features of the previous 

layer and mixes those by applying a nonlinear activation function. This mixing does not differentiate 

between time and feature index, i.e. it mixes past or present feature values within the time window.  

While for general CNNs of several dimensions, a CNN can be viewed as restricting a fully connected 

DNN to a locally connected network, this interpretation is not valid for the time series application as 

given by (1) and (2). Here, the convolution along the time axis is not a timewise-local restriction of 

connections, as a DNN does not consider time as a feature coordinate, but as an index of the data 

sample. With the embedding, the time dimension was artificially introduced in restricted form to the 

DNN. 

Sometimes it might be preferable to first construct a new feature out of the time evolution of a 

previous feature before mixing those with other features or mix different features at a given time first, 

before mixing those new combinations along the time axis. This can be achieved by separable CNNs: 

Choosing 

𝑊𝑙(𝑗, 𝑖, 𝑠) = 𝑊𝑙,𝑓(𝑗, 𝑖)𝑊𝑙,𝑤(𝑗, 𝑠) 

and splitting a given layer into two layers, where either the feature index or the time index is run first 

results in these two different mixing preferences: 

H𝑙(𝑗, 𝑡) = 𝜎𝑓 (∑ 𝑊𝑙,𝑓(𝑗, 𝑖) 𝜎𝑤 (∑ 𝑊𝑙,𝑤(𝑗, 𝑠)𝑠 H𝑙−1(𝑖, 𝑡 − 𝑠 + 1) + 𝑏𝑙(𝑗))𝑖 ) , 𝑗, 𝑖, 𝑠 𝑎𝑠 𝑏𝑒𝑓𝑜𝑟𝑒    (2a) 

Example: VWAP, signed volume or certain measures of imbalances arising from the order book 

would first mix one feature with a second feature and then aggregate the time evolution of that mixture 

further. Feature weighted moving averages like VWAP can also be represented by the first layer of a 

DNN as previously defined.  
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Figure 2 

CNN. For each time step, the full matrix of time embedding (kernel width w) of each input feature is 

presented as input to all features of the first layer. For the second layer, only a specific point in time 

and no higher order layers are included in the figure. 

 

2.3 Difference DNN to CNN 

If we choose 

𝑊𝑙=1
𝐷𝑁𝑁(𝑗, 𝑘) = 𝑊𝑙=1

𝐶𝑁𝑁(𝑗, 𝑖, 𝑠),  

𝑓𝑜𝑟 𝑘 = 𝑤0(𝑖 − 1) + 𝑠, 𝑖 = 1 𝑡𝑜 𝑑0, 𝑠 = 1 𝑡𝑜 𝑤0 

we can see, that for the first layer, CNN and DNN are equivalent. However, for the second layer, the 

DNN does not consider a time embedding of the first layer features, i.e. a time evolution of higher 

order features is not taken into account, except for the input layer. If the time evolution of a higher 

order feature (i.e. one arrived at after several layers) is preferred, a DNN is not the appropriate 

approach. A DNN would correspond to a CNN with 𝑤𝑙 = 1, ∀𝑙 > 1. 

 

2.4 Basic Deep Recurrent Neural Networks (“RNN”): 

RNNs are the quintessential network structure to represent time evolution and modeling time series. 

Their limitation thus far has been the difficulty to train them. Memory networks like LSTMs placing 

gated memory cells in place of the computational nodes have substantially improved that weakness. 
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New developments like Neural Turing Machines and DCNs have expanded this approach. A simple 

RNN propagates a feature node vector of a given layer at time t-1 to each feature node of the same 

layer at time t, jointly with the feature node vector of the previous layer at time t.  

H𝑙(𝑗, 𝑡) = 𝜎 (∑ 𝑊𝑙
𝑋(𝑗, 𝑖)𝑖 H𝑙−1(𝑖, 𝑡) + ∑ 𝑊𝑙

𝐻(𝑗, 𝑘)𝑘 H𝑙(𝑘, 𝑡 − 1) + 𝑏𝑙(𝑗)) , 𝑖 = 1 𝑡𝑜 𝑑𝑙−1, 𝑘 = 1 𝑡𝑜 𝑑𝑙  

(3) 

In this way, a specific feature at time t is mixed with its value at time t-1, but not directly, rather by 

passing the t-1 value to the next layer first, where it is activated and mixed with previous history, 

before it gets mixed with its t-time value. This can be better illustrated by expanding the above 

formula one step further into the past: 

H𝑙(: , 𝑡) = 𝜎(𝑊𝑙
𝑋H𝑙−1(: , 𝑡) + 𝑊𝑙

𝐻H𝑙(: , 𝑡 − 1) + 𝑏𝑙) 

= 𝜎(𝑊𝑙
𝑋H𝑙−1(: , 𝑡) + 𝑊𝑙

𝐻𝜎(𝑊𝑙
𝑋H𝑙−1(: , 𝑡 − 1) + 𝑊𝑙

𝐻H𝑙(: , 𝑡 − 2) + 𝑏𝑙) + 𝑏𝑙)    (4)

     

 (4) shows, how past data is transported to the new layer before the present data and interacts with the 

present only in “activated” and “pre-mixed” form. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 

RNN. At each point of time, the full input feature vector, but only for that point in time is presented as 

input to all the features of the first layer at that specific time. Each first layer feature at that time is 

passed to the features of that layer at the next time step, along with the input feature vector of the next 

time step. 
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2.5 Difference CNN to RNN 

For 𝜎(𝑥) = 𝑥 i.e. a purely linear model without nonlinear activation and a restriction of the recurrence 

to time-depth (kernel width) w, we obtain: 

H𝑙(: , 𝑡) = 𝑊𝑙
𝑋H𝑙−1(: , 𝑡) + 𝑊𝑙

𝐻𝑊𝑙
𝑋H𝑙−1(: , 𝑡 − 1) + (𝑊𝑙

𝐻)2𝑊𝑙
𝑋H𝑙−1(: , 𝑡 − 2) + ⋯

+ (𝑊𝑙
𝐻)𝑤𝑊𝑙

𝑋H𝑙−1(: , 𝑡 − 𝑤)+𝑤𝑏𝑙 

= ∑(𝑊𝑙
𝐻)𝑠−1𝑊𝑙

𝑋H𝑙−1(: , 𝑡 − 𝑠 + 1)

𝑠

+𝑏𝑙 , 𝑠 = 1 𝑡𝑜 𝑤 

Setting 𝑊𝑙
𝐶𝑁𝑁(𝑗, 𝑖, 𝑠) = (𝑊𝑙

𝑅𝑁𝑁,𝐻)𝑠−1𝑊𝑙
𝑅𝑁𝑁,𝑋

(j,i) , we see that in the purely linear case, CNNs and 

(restricted) RNNs, as defined by (2) and (3), are similar to the extent that linear RNNs are special 

cases of linear CNNs: For the strictly linear case, RNNs of the above form are more restricted through 

their time lag-weighting, as the weighting at time lag s is dependent on the weighting of time lag s-1.  

For general, nonlinear RNNs, H𝑙−1(𝑘, 𝑡 − 1) enters H𝑙(𝑘, 𝑡) only through H𝑙(𝑘, 𝑡 − 1)  and is 

nonlinearly combined with H𝑙−1(𝑘, 𝑡). 

2.6 Desired Feature Aggregation: 

While it may seem appealing to let the model act on data unconstrained by human expert interference, 

too much freedom leads often to computational capacity exceeding what is necessary, and finally 

resulting in overfitting. One way to cope with overfitting is to incorporate as much pre- or subject 

knowledge and guidance as possible without lowering the capacity too much. Specifically for 

applications in financial trading, knowledge can be employed not only in the engineering of input 

features and sensual targets, but also via preferences on the general production process for higher 

order features. 

DNNs, as introduced above, are only able to build computational nodes for the first degree of time 

evolution, time evolution of higher order features is not considered. In our view, the time evolution of 

for higher order features is essential for constructing indicators for momentum, dynamics and impact 

of an underlying price process. Specifically, path dependency and autocorrelation of derived 

individual features along the price path provide valuable information to predict future behavior, higher 

serial independence (timewise) of features (not independence of different features) lower the signal to 

noise ratio. Therefore, we favor the inclusion of time evolutions for higher order computational layers 

and thus CNNs over DNNs. However, DNNs can be used as a computational stack on top of a CNN, 

to mix final, time evolved features out of a previous CNN. 

RNNs are typically hard to train and have thus mostly been used in forms like LSTMs (i.e. memory 

cells instead of hidden nodes). But those as well as the recent developments like Neural Turing 

machines and DCNs have the aspect, that each lagged feature value will first be activated (non-

linearized) before it can interact with present feature values. In a lot of cases, this overshoots on 

nonlinearity and is a source for training problems like vanishing or exploding gradients, the 

accompanying large Hessian points to weaker generalization properties (see [11]). Specifically, before 

a feature value at time t-w can interact with a feature value at time t, it has to undergo w mixing and 

nonlinear activations. However, if not only raw data but also preprocessed data is used, the need for 

additional nonlinearity is reduced. It might be desired to first mix lagged feature values linearly before 

activation.  
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Moreover, we would like to guide the network to the extent, that it mixes features and history as noted 

before (2a), in the remarks about separable transfer matrices of CNNs. As a consequence, out of the 

three deep network structures as discussed above, a separable CNN architecture seems to be the most 

adequate architecture to promote higher order feature computation for financial trading, specifically if 

input feature engineering is applied. 

Next we give an example of an architecture, which combines several networks to target an overall task 

by dividing the problem into interacting sub-tasks.  

3. A deep architecture for financial trading: 

The behavior of an asset’s price process will vary with the state of the environment the market is in. 

Consequently, the relevance of features will vary with different market environments. One can 

partition the data into segments of different market environments and develop individual models for 

each environment, while using an independent classifier to identify the environment. We prefer an 

integrated model that reflects environmental dependency of features and targeted objectives for the 

price process by splitting the overall task into interacting sub-tasks to reflect this dependency.  In [1], 

the authors introduce an autoregressive convolution network for financial time series, in which they 

develop two stacks of deep CNN networks using one to supply a significance weighting to the other 

network, before being fed into a final, fully connected network producing the final output. We adopt 

and extend this architecture (with different objective) in the following way: We develop two 

computational stacks, each containing parallel silos of deep CNNs.  

The first stack, which we call main-stack, will be used to develop signaling features from specific 

input (“main-input”). The second stack is called environmental stack and contains several deep CNNs 

modeling the market environment.  

The task of the main stack will be to develop higher order features derived from input features. The 

task of the environmental stack is the development of an assessment of the given environment 

according to predefined characteristics and will be combined with the main task in the form of 

importance weighting for each higher order main-stack-feature.  

Each stack (main and environmental) will be further divided into networks representing additional 

subtasks:  
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Figure 4: 

Deep architecture with a stack of three environmental CNNs and a stack of three main CNNs. Input 

features to the main stack are fed into the respective CNNs at a later layer than raw input. 

Recombination of the three main stack CNNs take place at layer l
*
, just before the importance 

multipliers of the environmental stack are applied. The development of path dependent features is 

continued, before a final DNN mixes without path dependence for the final output.  
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3.1 The environmental stack of the model architecture: 

The environmental task will be further divided to develop importance weights for different 

characteristics of environment. Specifically, the environmental stack will consist of three non-

interacting deep CNNs, with potentially different numbers of layers, each following its own 

computational path, developing its individual environmental characteristic’s importance multiplier for 

the main stack. The three CNNs represent significance of a given data point, general market state and 

volatility regime respectively. The multipliers will be applied to the main stack at a specific layer 

(“weighting layer”) by multiplying each feature of that layer with the maximum of the three 

importance weights, i.e. a feature is important if it is important with respect to at least one of the 

environment characteristics (see Figure 4). After that, the importance weighted features will be further 

developed within the main-stack-CNN (see section 3.2). 

The input to the environmental stack is denoted by 

𝑋𝑡−𝑖
𝑒𝑛𝑣(𝑘) = [𝑋𝑡−𝑖

𝑒𝑛𝑣,1(1,2, … , 𝑘1), 𝑋𝑡−𝑖
𝑒𝑛𝑣,2(1,2, … , 𝑘2), 𝑋𝑡−𝑖

𝑒𝑛𝑣,3(1,2, … , 𝑘3)] 

Where „env,z” for z=1,2,3 denotes the z-th environment, 𝑘𝑧 denotes the number of input features for 

the z-th environment and i=1,2,…,w the kernel width at the input level. We have used the same width 

of all three environments, which is not necessary. We also use regular spaced sample intervals, aligned 

with the main stack. 

The individual input features for each CNN within the environmental stack, reflect a pre-chosen bias 

to the specific characteristic or task. E.g. the volatility regime characteristic will be fed by input-

features like order cancellation rate, trade intensity, volume, true range, etc. This way, while a bias is 

fed at the outset, the system will develop its own understanding of how volatility regime determinants 

are to be used to form features resulting in a helpful environmental-relevance-multiplier for the main 

stack.  

The features of the environmental layers would then be given according to equation (2) above, for  

𝑙 ≤ 𝑙𝑒𝑛𝑣,𝑧  , 𝑙𝑒𝑛𝑣,𝑧 denoting the number of layers of the z-th characteristic of the environmental stack: 

𝑓𝑜𝑟 𝑧 = 1,2,3 𝑎𝑛𝑑 𝑗 = 1,2, … 𝑑𝑙,𝑧: 

   𝐻𝑙
𝑒𝑛𝑣,𝑧(𝑗, 𝑡) = 𝜎𝑒𝑛𝑣,𝑧 (∑ 𝑊𝑙

𝑒𝑛𝑣,𝑧(𝑗, 𝑖, 𝑠)

𝑠,𝑖

𝐻𝑙−1
𝑒𝑛𝑣,𝑧(𝑖, 𝑡 − 𝑠 + 1) + 𝑏𝑙

𝑒𝑛𝑣,𝑧(𝑗)) , 𝑖 = 1 𝑡𝑜 𝑑𝑙−1,𝑧 ,

𝑠 = 1 𝑡𝑜 𝑤𝑙−1 

The final output of the environmental stack will be: 

𝐻𝑜𝑢𝑡
𝑒𝑛𝑣(: , 𝑡) = [𝐻𝑙𝑒𝑛𝑣,1

𝑒𝑛𝑣,1(1,2, … , 𝑑𝑙,1, 𝑡), 𝐻𝑙𝑒𝑛𝑣,2

𝑒𝑛𝑣,2(1,2, … , 𝑑𝑙,2, 𝑡), 𝐻𝑙𝑒𝑛𝑣,3

𝑒𝑛𝑣,3(1,2, … , 𝑑𝑙,3, 𝑡)] 

The final activation function for each environmental CNN will be the sigmoid function. 

It is of course possible to use the full set of input features and only one network to learn about the 

environment and which importance multiplier best applied to the main stack. In theory, a single 

environmental CNN with the combined input ought to be able to learn everything the three individual 

networks are able to come up with. In practice however, it won’t. Different and important 

environmental characteristics are more likely to be distinguished by different thematic input features, 

http://www.panathea.de/index.php


 

12 
 

developing their own weighting each and are thus also more likely to partition the environment into 

information bearing settings for the overall task. 

3.2 The main stack of the model architecture 

The main stack will consist of several parallel deep, residual (skip connection), separable CNNs, each 

with the task to develop higher order features for its individual time scale, reaching from high 

frequency to minutes, hours and potentially days. 

The use of multi time scales is common in technical trading systems, where coinciding signals on 

several time scales are used for entry or as confirmation of signals. It also allows to model cascading 

information from microstructure data and order book dynamics to short term price formation to longer 

term (hours to days) trends or anticyclical behavior. To make sure, that the different time scales 

regularly meet at specific points in time (achieved via strides for the layer if non-overlapping sampling 

periods are used), we use regular spaced sampling. We could also use irregular spaced data, 

subordinated to, e.g. trading time. Different scales would then meet at specific points of accumulated 

volume. The input features of the different CNNs will vary according to the specific scale and will 

include raw data as well as proprietary, aggregated features. The proprietary input features can be 

introduced to a later layer instead of the first layer. This way, we don’t mix proprietary features with 

raw data immediately, but allow the system to develop its own features out of raw data for several 

layers. Further comments on the input will be given in section 3.6. 

The developed features for the different CNNs of the main stack will be combined just before the 

weightings of the environmental stack will be applied. More specifically, the different CNNs of the 

main stack will all end after a certain number of layers with a layer of features combined from all of 

those CNNs, see Figure 4. At this stage the importance weights for each feature of the environmental 

stack will be applied before the main stack is further evolving along a single CNN, developing the 

combined and importance weighted feature set of the main stack. 

Let 𝑙∗  denote the weighting layer, at which the environmental stack will be combined with the main 

stack. The features at the 𝑙-th layer for 𝑙 ≤ 𝑙∗   of each CNN representing time scale a=1,2,3 of the 

main stack are developed according to: 

   𝐻𝑙
𝑚𝑎𝑖𝑛,𝑎(𝑗, 𝑡) = 𝜎𝑓

𝑚𝑎𝑖𝑛,𝑎 (∑ 𝑊𝑙,𝑤
𝑚𝑎𝑖𝑛,𝑎(𝑗, 𝑠) 𝜎𝑤

𝑚𝑎𝑖𝑛,𝑎 (∑ 𝑊𝑙,𝑓
𝑚𝑎𝑖𝑛,𝑎(𝑗, 𝑖)𝑖 𝐻𝑙−1

𝑚𝑎𝑖𝑛,𝑎(𝑖, 𝑡 − 𝑠 + 1) +𝑠

𝑏𝑙
𝑚𝑎𝑖𝑛,𝑎(𝑗))),   

𝑖 = 1 𝑡𝑜 𝑑𝑙−1 , 𝑠 = 1 𝑡𝑜 𝑤𝑙−1 , 𝑎 = 1,2,3       

 (5) 

After the weighting layer 𝑙∗ is calculated via (5), the different CNNs of the main stack end and their 

features are combined to one set of features at each data point of the highest time scale, achieved via 

the use of corresponding different strides for the different CNNs at layer 𝑙∗, if non-overlapping 

sampling periods are used. As an example, assume that non-overlapping sampling periods are used 

and the scales are 5M, 30M and 120M. The lowest scale will meet the highest scale every 24 steps and 

the second scale will meet the highest scale every 4 steps. It corresponds to including strides for layer 

𝑙∗  for the CNNs of the main stack of 24, 4 and 1 respectively for the three CNNs. The opposite 

extreme w.r. to overlapping sampling periods is to sample all data every 5M, i.e. according to the 

lowest scale. In this case, no striding is required.  

   𝐻𝑙∗
𝑚𝑎𝑖𝑛 = [  𝐻𝑙∗

𝑚𝑎𝑖𝑛,1,    𝐻𝑙∗
𝑚𝑎𝑖𝑛,2,    𝐻𝑙∗

𝑚𝑎𝑖𝑛,3] 
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and we set  𝑑𝑙∗
𝑚𝑎𝑖𝑛 = 𝑑𝑙∗

𝑚𝑎𝑖𝑛,1 + 𝑑𝑙∗
𝑚𝑎𝑖𝑛,2 + 𝑑𝑙∗

𝑚𝑎𝑖𝑛,3
 

A note on data points for different time scales and non-overlapping sampling periods for all scales:  

Staying with the previous scale example of non-overlapping 5M, 30M and 120M bins and assuming 

the data points of the 120M scale are the signaling points. For T such data points, the other scales have 

24T and 4T data points respectively. One way to develop the features for the different scales is to use 

the full data set for all scales and use strides of 24, 4 and 1 respectively for the last, recombination 

layer (aligning with the signaling times). In this case, for e.g. the 5M scale we would, at a certain 

signaling point “t” use w times l of historic 5M bin information, with l being the current layer. A 

second way would be to use strides summing up to 24 and 4 respectively for the smaller scales along 

the way, i.e. before recombination. In this case, the same data as in the first case is used, just with 

fewer computational nodes. A third possibility is to use only the 120M scale data points and take the 

last w 5M bins, 30M bins and 120M bins respectively, i.e. in the case of the 5M scale, only the last w 

5M bins of data will be used for all layers. 

3.3 Combining environmental and main stacks: 

The environmental stack would be recombined with the main stack directly after layer 𝑙∗ 
, with    

𝑑𝑙𝑒𝑛𝑣,𝑧

𝑒𝑛𝑣,𝑧 = 𝑑𝑙∗
𝑚𝑎𝑖𝑛, ∀𝑧 , according to: 

   𝐻𝑙∗
𝑚𝑎𝑖𝑛,𝑟𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑(𝑗, 𝑡) =    𝐻𝑙∗

𝑚𝑎𝑖𝑛(𝑗, 𝑡) ⊗ 𝐻𝑜𝑢𝑡
𝑒𝑛𝑣(𝑗, 𝑡) 

=    𝐻𝑙∗
𝑚𝑎𝑖𝑛(𝑗, 𝑡) ⊗ max (𝐻𝑙𝑒𝑛𝑣,1

𝑒𝑛𝑣,1(𝑗, 𝑡), 𝐻𝑙𝑒𝑛𝑣,2

𝑒𝑛𝑣,2(𝑗, 𝑡), 𝐻𝑙𝑒𝑛𝑣,3

𝑒𝑛𝑣,3(𝑗, 𝑡)), 𝑗 = 1,2, … , 𝑑𝑙∗
𝑚𝑎𝑖𝑛 

As mentioned before, multiplying each feature of the main stack with the maximum of the different 

environmental characteristic’s weightings, we make sure that a feature, being important in one 

environmental setting keeps its importance also in cases of unimportance with respect to the other 

characteristics. 

After the importance weightings are applied, we continue the main CNN for several layers to further 

develop time evolutions importance weighted higher order features that now combine all time scales.  

For all layers 𝑙 > 𝑙∗, the main features of that layer are calculated as in equation (3). 

   𝐻𝑙
𝑚𝑎𝑖𝑛,𝑟𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑(𝑗, 𝑡) = 𝜎𝑚𝑎𝑖𝑛 (∑ 𝑊𝑙

𝑚𝑎𝑖𝑛(𝑗, 𝑖, 𝑠)

𝑠,𝑖

𝐻𝑙−1
𝑚𝑎𝑖𝑛,𝑟𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑(𝑖, 𝑡 − 𝑠 + 1) + 𝑏𝑙

𝑚𝑎𝑖𝑛(𝑗)) ,

𝑖 = 1 𝑡𝑜 𝑑𝑙−1 , 𝑠 = 1 𝑡𝑜 𝑤𝑙−1 

The final layer of the main stack can be joined by a strided skip connection, not only to better learn the 

identity function, but also, in case the original input features provide added value. 

After the final layer 𝑙 = 𝑙𝑚𝑎𝑖𝑛, the time-evolutionary aspect of the features of that layer are considered 

to  be fully developed and will now serve as input to a final, fully connected deep network, which 

concentrates on mixing the final main-stack-features for the targeted output, according to equation (1). 

H𝑙(𝑗, 𝑡) = 𝜎𝐷𝑁𝑁 (∑ 𝑊𝑙(𝑗, 𝑖)

𝑖

H𝑙−1(𝑖, 𝑡) + 𝑏𝑙(𝑗)) 
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with H0 =    𝐻𝑙𝑚𝑎𝑖𝑛

𝑚𝑎𝑖𝑛,𝑟𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑
. 

The final one-dimensional output, y, is then compared against the target via the chosen error functions. 

𝑦(𝑡) = 𝜎𝑜𝑢𝑡𝑝𝑢𝑡 (∑  𝑊𝑙𝐷𝑁𝑁
(1, 𝑖)

𝑖

H𝑙𝐷𝑁𝑁−1(𝑖, 𝑡) + 𝑏𝑙𝐷𝑁𝑁(1)) 

3.4 Output and target: 

As final output target and training loss, we prefer to use handcrafted targets and error functions rather 

than the most common, standard functions. In the case of directional predictions, we would, e.g., use a 

utility based allocation/position output, which is then contrasted against a utility based performance 

evaluation for error calculations.  

Other potential output targets for the proposed model include multi-asset allocation coefficients, 

regime switching points (change-point detection), and future input feature classification. 

Specifically for short term applications the proposed type of architecture can also target the parameters 

of a model/process fit like drift or volatility of a diffusion process, or parameters of Point process to 

represent various trade- or order intensities. A classification of the parameters will prove more robust 

than a level regression. 

Outputs that target the return, risk adjusted return, make predictions on the exact level of a market 

(regression) or simply include stop-loss and take-profit levels may sound like ideal objectives for 

trading strategies, but are in most cases too noisy, leading to overfitting.  

 

3.5 Training: 

The training of the model is done by standard Backpropagation, where we use some, but not all of the 

standard tricks and techniques to improve learning. In general we use techniques that speed up 

learning and lead to more robustness (like small Hessians around the optimal parameters set). We 

avoid tricks that merely circumvent problems without addressing their causes. Among those, we use: 

 Stochastic Gradient descent 

 Momentum 

 Normalization of input scale 

 Dropout 

 

We don’t use: 

 Batch normalization. All layer outputs were brought to equal scale already which was in our 

experiments sufficient. 

 De-meaning within normalization. The mean carries information content we would like to 

keep. 

 Gradient Clipping: The necessity for gradient clipping points to rapid changes of the gradient, 

i.e. large Hessians, which again point to low robustness and overfitting. We would rather 

change the architecture. 
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3.6 Comments on input features 

It has been reported in other areas of application that deep learning models can more easily digest raw 

data than more shallow architectures and are able to learn robust representations from them. However, 

our experience with respect to the applications to financial trading suggests that a solid understanding 

of the trading problem at hand, the underlying trading environment and process are still of distinct 

advantage in constructing informative input features. Input features, resulting from formalizing aged 

trading experience still considerably enhances performance and is in most cases key to differentiating 

between generalizing ability and overfitting. On the other hand, the approach to throw everything 

available in the feature universe at the model as input will provide the model with a lot of useless 

features for the task, the model will use them to better explain the training data, leading to more noise 

and overfitting. A PCA of the input features is a standard technique to reduce the dimension of the 

input space and achieve independence of feature space components. However, redundancies have 

sometimes advantages too. See [10] for more advanced methods on input feature preparation. 

Without going into details at this stage, we use a feature selection process assessing the information 

content of input features for the objective before feeding the model. While this optimizes the input, 

some of the hyper parameters used in deep networks such as the number of hidden nodes/features per 

layer give rise to similar problems: Too many hidden nodes per layer provide the model potentially 

with too many higher order features for the task at hand and could again lead to overfitting. There are 

recipes for learning hyper parameters, which we will not consider here. The evolved importance 

multiplier applied to each higher order feature employed in the model above helps to reduce 

overfitting. 

Moreover, we view the involvement of several time scales as very beneficial. Specifically, if 

microstructure data like order book information is used on very small scale, aggregated and combined 

with price data on larger scales, cascading effects can be more easily captured. Technical trading 

systems often use multiple time scales, but then consider the same price driven features, just on 

different scale. While this will still improve signal robustness and provide for better entry levels, it 

does not capture cascading effects the way different data and different features for different scales do. 

4. Conclusion 

ML and specifically deep learning models offer an automated method to extract higher order features 

together with their interaction from data. In particular, viewing a model as a computational graph, it 

offers an integrated approach to subdivide a task into interacting sub-tasks. Input feature engineering 

and architectural designs are key aspects to the success of these approaches when applied to financial 

trading. The construction of appropriate deep learning models reflect trading and market experiences 

as well as preferences arising out of experimental experience with different approaches. In this 

monograph, we have given reasons as to why serial CNNs are appropriate building blocks for a deep 

architecture application to financial trading and a specific example of how to distribute different 

aspects important to the overall task. Specifically, we have given an integrated approach reflecting 

changing relevancies of features in different market environments and informational cascades.  
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