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Abstract

The rise in popularity of benchmark free and complex trading strategies throughout the
last decade has made available a large variety of risk and performance profiles. As a con-
sequence, to account for their complex performance characteristics, a lot of effort has
been devoted to classify and value the performance of these strategies by the alterations
of previous – or innovative measures. However, as most measures are often still simple
path – and context independent statistics, most often the information provided proves
inadequate to separate performance characteristics – as evidenced by the latest crisis. 

This paper provides a methodology that integrates the clustering and performance
measurement of trading strategies in a context and preference based environment. It
decomposes preferred performance characteristics into fragments of context dependent
behaviour for clustering purposes. It subsequently aggregates these fragments of per-
formance characteristics into a performance measure. The methodology allows for con-
sideration of path dependencies. Two applications, in the clustering of hedge fund styles
and the ordering of alternative equity strategies are given. A further application in the
statistical replication of trading strategies is highlighted.

Keywords: 

Clustering, Performance measure, Stochastic dominance, State contingent preference.

JEL classification: 

C10, C14, C18, C51, C65, G10.

Glaffig, Clemens H.      Panathea Capital Partners GmbH & Co. KG, Grünwälderstr. 1- 7. Freiburg, Germany.  
+49 761 3894 8961 Fax: +40 761 3894 8969. E-mail: Clemens.glaffig@panathea.de

R
E

SE
A

R
C

H
 A

R
T

IC
LE

03. 02-23. Clemens OK_Maquetación 1  15/09/11  09:47  Página 2



a
pplicatio

ns o
f state c

o
ntingent sto

chastic o
rdering m

etho
ds to

 the c
lustering and Perfo

rm
ance m

easurem
ent o

f trading strategies G
laffig, C

. H
.

3
 

  

A E S T I M AT I O
  

� 1. Introduction

The selection of trading strategies or funds typically is a two stage process: The first

stage defines an admissible subset of the universe of available strategies, often by

characterising the preferred strategy styles – like global macro, long-short equity,

emerging market equity etc.– possibly further constrained by risk preferences, market

perception and regulatory matters. The second stage evaluates and orders the strate-

gies of the chosen subset, for which one or several measures of performance are used. 

In this paper, we provide a framework for an integrated approach to clustering and

ordering strategies, which is based on state contingent investor preferences.

Typically, grouping or clustering strategies according to their style characteristics is highly

subjective and prone to abuse – depending on the flavour of the moment, a global

macro strategy very quickly becomes a Futures Fund, commonly referred to as com-

modity trading advisor (CTA) or a “special situations” strategy. Consequently, each style

cluster exhibits vastly different risk and return characteristics amongst its constituents.

A more useful way of clustering would be according to preferred performance charac-

teristics, as measured by an appropriate technique. Common performance measures

are inadequate to express detailed characteristics, the perception of which varies with

investors. Moreover, investor perception of perform ance quality is generally context,

i.e. market dependent.

Early performance measures like the Sharpe ratio were based on the mean/variance

framework, sufficient for the benchmark driven, long only world, depending on mar-

ket instruments reflecting risk factors in a linear way. This framework proved insuffi-

cient for the world of alternative strategies, with their active trading and use of

complex derivative instruments, producing nonlinear risk factor dependencies. As has

been shown in several papers (see e.g. Spurgin, 2001, and Goetzmann et al., 2002),

the Sharpe ratio can easily be manipulated by employing or supplementing asymmet-

ric return strategies with positive carry trades, like option writing strategies.

In light of this evidence, a number of improvements and innovative performance meas-

ures were developed: Amongst those, Kazemi et al. (2003) present a revised Sharpe ratio,

addressing the issue of non normality of strategy returns. Further variations of the

Sharpe ratio were developed, like the Generalised Sharpe Ratio, Sortino ratio, gain-loss

ratio or performance indices based on distortions of the return distribution, see Cherny

et al.(2009), Cherny and Madan (2009) and Eberlein and Madan (2009), all addressing

and capturing various aspects of return characteristics of alternative strategies, not cap-

tured by the original measures. Many more were developed, for a comprehensive sum-

mary and discussion see Cogneau and Hubner (2009).
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Still, most often these measures are simple statistics of the return distribution, often in

the form of reward to risk ratios with varying concepts of risk. Common to most per-

formance measures is the aversion to risk, with little or no allowance for risk tolerance

(see e.g. Zakamouline and Koekebakker, 2009) for a utility based approach which in-

cludes preferences for higher moments of the return distribution, allowing for a sym-

metric treatment of risk aversion and tolerance). However, as reality has taught,

assessing risk via a single number is dangerous. In the same way, judging on a strategy’s

performance based on a single isolated statistic is meaningless. In addition, most per-

formance measures are path independent, contrary to investor perception of perform-

ance quality: A manager producing 50 times a -1% return followed by 50 times a +1%

return produces the same Sharpe ratio and VaR as a manager showing a sequence of

50 times a -1% loss immediately followed by a 1% gain – in reality investor’s perception

of - and reactions to these performances would be drastically different.

In our integrated framework, we cluster trading strategies based on preferred return

characteristics and order them by attaching scores as performance measures to cluster

points. To make the approach context and investor dependent, we revisit the concept

of state contingent utility theory, approaching the subject from a different angle than

historically done. The main issues we would like to be reflected in this framework are:

� Performance characteristics have to be assessed in context, within a market

environment or relative to a market benchmark. Integrating contextual de-

pendencies at the outset will produce more robust results than comparing

context independent measures ex post.

� Path dependencies of return characteristics should be reflected.

� Investor preferences, specifically context dependent risk aversion and tolerance

should be included. This is more naturally achieved by working with the full

return distribution rather than a statistic of it.

The first point is addressed by relating return characteristics to a benchmark, which

could be a performance benchmark or a market-state-indicator. The second point is

reflected by working with multiple time scales. The third point will be addressed by

reflecting investor preferences via a contingent target distribution, contingent on the

benchmark state. To make use of the information provided by the full return distri-

bution, we will use a version of weak integral stochastic dominance.

Classical n-th order stochastic dominance has been well studied, as has its equivalent

formulation in terms of utility theory. Also, contextual dependencies have been 

reflected to some degree by considering state dependent utility functions. However, 

n-th order stochastic dominance (“sd”) or utility preference over large classes of utility

functions is too restrictive to separate different strategies for clustering purposes and
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to imply a full ordering of the strategies. Specifically, first and second order sd are

very sensitive to sampling errors and outliers, complicating practical applications.

Moreover, the very definition of sd or the restriction to concave utility functions in-

cipiently overemphasizes risk aversion in all circumstances. 

More general integral stochastic orders have been applied in several financial appli-

cations; see e.g. Müller (1997) and Müller and Stoyan (2002) for a general introduc-

tion and e.g. Rüschendorf (2005) and Mainik and Rüschendorf (2010) and Levy

(2006) for more specific financial applications. Classical stochastic dominance has

also been studied to evaluate performance of, e.g., portfolio insurance strategies see

Annaert et al. (2009) and hedge fund performance, see e.g. Li and Linton (2007).

We differ from standard stochastic dominance in the following way: While we use a

class of state contingent target distributions, we do not demand the validity of an or-

dering condition valid for all members of the class to achieve dominance, but view

the set of dominances over individual target class members for clustering purposes

and impose an ordering by applying a functional to that set. The ordering thus ob-

tained is weaker than the standard integral stochastic ordering over the target class.

The paper is organised as follows. Section2 will provide the main definitions with

some examples for the selection of benchmarks and targets. Section 3 will provide

some properties and decomposes the dominance here employed into its main

sources. Section 4 will exhibit applications to both clustering and ordering. Section 5

concludes.

� 2. Definitions

We will investigate the time series of strategies for which we use samples of the total

daily returns. 

By a sample, we mean any n-fold aggregate of daily returns, to reflect n-day returns.

Using returns over number of different horizonts throughout the analysis allows in-

corporating path dependencies of the performance characteristics of a strategy and

judge on their evolution.

To express investor preferences and separate out individual performance characteris-

tics, we will compare the distribution of a strategy sample X to a set Ω of customised,

predefined target distributions. A specific target distribution reflects a specific pref-

erence of performance characteristic. Preferences are thus described by a full distri-

bution against which the full distribution of a given strategy is compared. 
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Let FX (x) and FT (x) denote the cumulative distribution functions of a strategy X and

a target T respectively.

To start out, we first express state independent preferences via state independent,

unconditional target distributions:

Definition 1

Let Ω be a family of one dimensional target distributions, reflecting the specific in-

vestor performance preferences with |Ω|=N. We call the N-dimensional vector

DΩ(X )= {DTn(X ):= ∫
∞

-∞
(FTn(x)–FX(x))dFTn(x), Tn ∈ Ω, n=1,2...N }∈ RN

the unconditional dominance of X over the target class Ω. DTn(X ) is called the dom-

inance of X over the targetTn . 

We call the union of all the ranges of DΩ(X ) over all available strategies the cluster

space for Ω.

Notes: While we will concentrate on the targetsT being random variables, we could

generalize the definition by allowing generalized distributions s.th. T acts on the dis-

tribution of X to include cases in which T has the same moments of specified order

as the strategy X it is compared to.

Figure 1 illustrates Definition 1: The left graph shows the cumulative distribution functions

of a target and a strategy. The middle graph shows the un-weighted difference FT(x)-FX(x).
The right graph shows the weighted difference (FT(x)-FX(x))dFT(x). The (signed) area of

the shaded region corresponds to DT(X ), which in this example is greater than 0. The

right graph conveys more information on the specific regions of greatest contribution to

dominance than the simple number DT(X ). Specifically, in this example, while T domi-

nates X for larger returns, the X dominance for lower returns outweighs. This is a typical

picture of a strategy with less leverage than - and positive alpha relative to the target. 

� Figure 1. Left: Example of specific cdf’s of a target and a strategy; 
Middle: Un-weighted difference of cdf’s; Right: Weighted difference of cdf’s.
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Examples of Specific Target Distributions:

� Let the distribution of T be defined by dF(x)=dv0
(x), the delta function centred

at v0, defined by dv0
(x):=lim        exp(– ). Then DT (X )=½ –FX (v0), which is

positive iff median(X )>v0 . Also, if FX (X ) admits a density, VaR½–DT (X )(X )=v0 ,

i.e. the VaR of X at level ½ –DT (X ) is v0. 

� Let dF(x)=½dv0
(x)+½d–v0

(x), then 2DT (X)=1–FX (v0)–FX (–v0)=P(X ≥v0)–P(X <–v0),
which can serve as a measure of skew.

Given investor’s preferences are typically context dependent, we add one more feature

to our consideration: State contingency. It allows, e.g., to integrate different attitudes

towards risk and outperformance expectations in different market environments.

We denote by B a benchmark or market-state-indicator, representing the “market”

which will separate scenarios. Let Ω(B) be a family of conditional targets, represented

by their conditional distribution function, conditioned on B, i.e. T|B∈Ω(B) will be

identified with dFT|B(t|b). The distribution of B, dFB(b)can represent a real benchmark

distribution or a distribution weighing the importance of specific benchmark states

to an investor. Again, we assume |Ω(B)|=N

Definition 2

We call DΩ(B)(X )= {EB(DTn|B(X |B)), Tn |B ∈ Ω(B),n =1,2,...N }
= { ∫

∞

-∞
DTn|B(X |B)dFB (b),Tn |B ∈ Ω(B),n =1,2,...N}

= { ∫
∞

-∞ ∫
∞

-∞
(FTn|B(x|b)–FX|B (x|b))dFTn|B  (x|b))dFB(b),n =1,2,...,N}∈RN

the state contingent dominance vector of X over the performance target class Ω(B)

contingent on the benchmark B.

We call EB (DT|B(X |B)) the state contingent dominance of X over the target T, contin-

gent on the benchmark B. 

For ease of notation, we will write DT|B(X |B) instead of EB (DT|B(X |B)), so that DT|B(X |B)
= DΩ(B)(X ) for Ω(B)={T|B}.

Again, as before, if dFT|B(t|b) and dFX|B(x|b) admit densities, DTn|B(X |B) can be expres-

sed as

{ –∫
∞

-∞∫
∞

-∞
FX|B(x|b)dFTn|B (x|b)dFB(b),n =1,2,...N}

= { ∫
∞

-∞ ∫
∞

-∞
(FTn|B(x|b)dFX|B (x|b)dFB(b)– ,n =1,2,...,N}

= –ET,B(FX|B)=EX,B (FT|B)– (*)
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where ET,B and EX ,B denote expectation under the joint distribution of T and B and X
and B respectively.

Examples:

� Assume T|B =B+α+e, for constant α and e normally distributed, independent

of B with zero mean. Then DT |B(X|B) expresses to what extent X dominates

randomness above the benchmark outperformance of α.

� Assume the case of “active equity” with target T|B=β(B)B, with 

β(B)=β+1(B>0)+β–1(B<0),β+>β– . Then DT |B(X) measures the dominance relative

to an active equity benchmark.

Note: If any of the target distributions Tn is independent of B, then DTn|B(X|B)=DTn
(X),

i.e., the state contingent dominance becomes unconditional dominance. 

In some applications, as seen in section 4, it is opportune to estimate the conditional

distribution FX|B(x|b) using the empirical marginals for X and B and fitting a copula.

In this context the following equivalent version of Definition 2 will be beneficial (for

brevity, we assume the conditional target distribution admits a density:

DΩ(B)(X )={ ∫
∞

-∞ ∫
∞

-∞
(FTn|B(x|b)cX ,B(FX (x),FB (b))dFX(x)dFB(b)– ,Tn ∈Ω(B)}

where cX ,B(FX(x),FB(b)) is the copula density of X and B. 

A note on the connections to utility theory:
As mentioned in the introduction, classical n-th order stochastic dominance has an

equivalent formulation in terms of utility theory, whereby statements on n-th order sto-

chastic dominance correspond to statements on whole classes of utility functions, see,

e.g., Levy, (2006). While utility theory considers abstract classes of utility functions and

focuses on general and absolute preferences like aspects of risk aversion, we emphasize

bespoke preferences. Hence there is no such correspondence between our approach to

ordering and general classes of utility functions as for classical stochastic dominance.

Nevertheless, a connection to utility theory can be constructed: If we assume the target

T to be independent of B,T|B=T, and set uT (x):=(FT (x)– ), it follows from (*), that dom-

inance becomes expected utility with utility function uT (x), i.e. DT (X)=EX (uT). However,

as one difference to commonly used utility functions, uT (x) would be S-shaped for a

large class of target distributions and would hence, e.g., not belong to the CARA or

HARA class, reflecting aspects of prospect theory instead. If T has a normal distribution,

then the Arrow Pratt risk aversion is positive (i.e. risk averse) to the right - and negative

(i.e. risk tolerant) to the left of the median of T (see also Meucci, 2007, p. 270 ff). 
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Overall, our approach can be viewed as a way to construct specific state contingent

utility functions with a more detailed interpretation of functional properties. As an

example, the zero-intercept of uT (x), would not only serve as the separator between

negative and positive utility, but, being the median of T, as a benchmark for relative

skew (see section 3.2). Also, the local convexity or concavity of a utility function would

not only be a measure of risk aversion or tolerance but, in specific cases, an expression

of stop loss preferences.  

We feel though, that expressing state contingent preferences via distributions is more

intuitive: Definitions 1 & 2 express preferences not by the individual utility of returns,

but by specifying in which way targeted returns scatter around a benchmark or in

what way a strategy ought to distribute and behave in a specific state of the market. 

To cluster strategies that are similar in a statistical sense relative to our preferences

as expressed by the unconditional and state contingent target sets, we define a semi-

metric which allows weighing different preferences:

Definition 3

The semi-distance DΣ between two strategies X and Y is defined via the Mahalanobis

distance between DΩ(B)(X ) and DΩ(B)(Y ):
DΣ (X,Y):=   (DΩ(B)(X ) –DΩ(B)(Y ))’Σ–1(DΩ(B)(X )–DΩ(B)(Y ))

for a positive, symmetric NxN matrix Σ, expressing the weights attached to different

preferences. 

Note: The semi distance of Definition 3 is identical to considering standard Euclidean

distance for the cluster-preference-weighted vectors D*
Ω(B)(X )=Σ –1/2DΩ(B)(X ).

DΣ (X,Y )=0 does in general not imply X=Y, only that X and Y are indistinguishable

relative to our stated preferences. Hence DΣ does not define a metric on RN. In the

applications in section 4, we will use the semi distance DΣ to cluster strategies. The

origin in cluster space corresponds to the set of strategies with complete indifference

w.r. to the set of preferred performance characteristics.

To evaluate the performance characteristics of a given strategy X, we map the cluster

point DΩ(B)(X ) to the real numbers and call that map a performance measure. In this

way, we build a performance measure from fragments of preferred performance char-

acteristics, each fragment a DT|B)(X|B) value for T|B∈Ω(B).
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Definition 4

A performance measure P over the target class Ω(B) is a map from R|Ω(B)|
→R, 

satisfying:

(i) P is strictly non decreasing in each coordinate

(ii) P (0) = 0

We will say that X P-outperforms Y under preference Ω(B), if P(DΩ(B)(X ))> P(DΩ(B)(Y )).

Examples: Let dn =dn(X):=DTn|B(X|B), Tn|B∈Ω(B),

� P (dn,=1,2,...,N):=infn (dn(X))

� P (dn,=1,2,...,N):=∑
n

wn dn with ∑
n

wn=1 and wn≥0,∀n. 

� Assume {Tn|B∈Ω(B)} constitutes an ordered set of targets, ordered by some dis-

tributional property in the sense that {X: dn(X)>0}⊂{X : dm(X)>0},∀n,m;n>m
(e.g. identical mean and decreasing variance).Then P(dn,=1,2,...,N):=max {n: dn>0}

constitutes an index of performance similar to the acceptance index in Cherny

et al. (2009), Cherny and Madan (2009) and Eberlein and Madan (2009). 

P gives rise to indifference curves in n-space, along which strategies produce the

same performance measure relative to Ω(B). We will explore more specific examples

in Section 4.

An application which is beyond the scope of this paper is strategy replication. We will

here only briefly comment on it:

A remark on preference based, state contingent strategy and hedge fund replication: 
Hedge fund replication has been well studied during the last decade. The two main

techniques are factor based- and distributional replication. The stochastic ordering

methods described in this study give rise to a new hybrid approach to hedge fund

replication, which we refer to as dominance replication. It combines the intuitive

construction of a replicating strategy as given by factor replication with the objective

to replicate state contingent characteristics of the return distribution. By matching

dominance vectors for predefined sets of target distributions, it replicates preference

based distributional performance characteristics to arbitrary fine detail. Dominance

replication is less ambitious in its objective than factor based replication, reducing

the risk of over fitting. Its objective is concerned with distributional properties, it is

however more general than classical distributional replication as introduced by Kat

and Palaro (2005).
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I N T E R N AT I O N A L
J O U R N A L  O F  F I N A N C E

A E S T I M AT I O
THE  I E B

More specifically, let Y be the strategy we wish to replicate. If we choose a set a of

available trading strategies, a replication, which will reflect our preferences w.r. to

performance characteristics and weighting, is given by: X*=arg min (DΣ (X, Y)) for

given Ω(B). The set a could be given by: X ∈a, X =Σαi Si , where {Si } is a set of prede-

fined asset based risk factors and αi =αi (B=b) is a state contingent (potentially rule

based) allocation to Si. More details to dominance replication will be given in a forth-

coming study.

� 3. Properties and Sources of Dominance

3.1. Properties
In the following, we will assume that all target distributions admit densities. In the

applications we will only consider target distributions that can be approximated by

absolutely continuous distributions s.th. all of the following considerations hold. We

will denote the median of X and T by mX and mT respectively.

The following is a list of simple properties that can be useful in the construction of

target distributions. For ease of notation, we will drop the B-dependence. 

(i) Sensibility: If X >Y in all scenarios ⟹FX (x)<FY (x), x from which 

DT (X)>DT (Y), T follows directly from the definition.     

(ii) DT (X)=–DX (T).

(iii) For fixed c, DT (X+c)=DT–c (X) . 

(iv) If T is constant, DT (X)>0 if and only if mX >T.

(v) Scaling with leverage: For l>0,DT(lX)=DT/l (X). For l<0,DT(lX)=–DT/l (X).

Specifically, DT (–X)=–D–T (X). If the density of T is scale invariant, i.e. 

lF’T (lx)=F’T (x), l>0, x, then DT (lX)=DT (X). 

Properties (i) to (v) follow straightforward from the definition, using a simple change

of variable in the integration. Property (v) stresses, that DT (X) is in general not scale

independent as are a large number of performance measures. The preference towards

risk as expressed by T will determine whether leverage is penalised, rewarded or DT(X)

is indifferent w.r. to it.  

3.2 Sources of Domination
To cluster strategies via different dominance values of a strategy w.r. to a given set of

conditional target distributions, the individual dominance values do not matter, only

their semi distance to the dominance values of other strategies, as defined in Definition

3. However, to gain a better understanding what different values for DT(X) actually

mean in terms of outperforming a target, we introduce the concept of generalised alpha,
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which relates a dominance value to a degree of classical, CAPM-like out performance.

We then decompose this alpha into its two sources: Median and skew. While different

medians contribute to dominance in correspondence to classical CAPM-alpha, relative

skew describes a bias of the way the strategy returns are scattered around its median

relative to the way the target scatters around its median.

From (i) of the properties above, it follows for c>0, DT (T+c)>0 and DT (T+c) is con-

tinuous and monotone increasing in c with value equal to 0 for c=0. Moreover,

lim DT (T+c)=± . Hence we define:

Definition 5  

For given benchmark B and conditional target T|B, αT|B(X)={α |DT|B(T|B+α)=DT|B(X)}

is called the generalised alpha value of strategy X w.r. to target T|B.

αΩ(B)(X)={αTn|B(X),Tn ∈Ω(B)} is called the generalised alpha vector of strategy X w.r. to

target set Ω(B). αΩ(B)(X)∈R|Ω(B)|.

For a set Ω(B) of targets and performance measure P,

αΩ(B),P(X)=arg min {α |P({DTn|B(Tn|B+α)})=P({DTn|B(X)),n≤|Ω(B)}|} is called the state con-

tingent alpha of strategy X w.r. to performance P over target set Ω(B). 

Notes:
(i) From the comment above, it follows that for each given strategy X, target T|B

and benchmark B, the generalised alpha value exists and is uniquely defined.

(ii) The performance measure P induces a map P*on the generalised alpha vector via

P(DΩ(B)(X ))=P(DT1|B(X),...,DTN|B(X))

=P(DT1|B(T1|B+αT1|B(X)),...,DTN|B(TN |B+αTN|B(X)))

=P* (αT1|B(X),...,αTN|B(X))=αΩ(B),P(X)

For the following remarks, we assume that the target set Ω(B) is just the singlet {T|B}

and drop the B-contingency, as the remarks are valid for the conditional distributions

as well as the marginal distributions.

Skew
For distributions with identical medians, the source of dominance is some sort of positive

skew of one distribution relative to the other. The standard, statistical form of skew, de-

fined as the third centralised and normalised moment is inadequate to measure this rel-

ative skew. We will use a different notion of skew to describe this source of dominance. 
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To start out we look at symmetrical distributions. A symmetric target distribution

with zero mean reflects complete risk indifference. Assume that a given target distri-

bution T admits a symmetrical density and mX=mT=0. DT (X) is then a reflection of

the extent to which X outperforms randomness and is due solely to relative skew.

Specifically, we have

DT (X)= –∫
∞

-∞  
FX(x)dFT(x)= –∫

0

-∞ 
FX(x)dFT(x) –∫

∞

-0
FX(x)dFT(x)

=   –∫
∞

-0
(FX(x)+FX (–x))dFT(x)

as dFT (x)=dFT (–x). If the distribution of X is also symmetrical, then FX (x)=1–FX (–x) or

FX (x)+FX (–x)=1 and hence we have:

Lemma: Assume that mX=mT. Then,

(i) If X and T have both symmetric distributions, DT(X)=0 independent of their 

respective volatilities.

(ii) If T has a symmetric distribution, DT (–X)=–DT(X).

(iii) If X has a symmetric distribution, DT (–X)=DT(X).

Intuitively, whenever the distribution of X with mX=0 has more weight to the right of
|x| than to the left of –|x|, i.e. 

P(X>|x|)–P(X<–|x|)=1–FX (x)–FX(–x)>0, x≠0, (**)

we will view X has having positive skew or positive tail skew if the this relationship

holds x >x0 , for some x0. 

Motivated by this, if mX =mT = 0, we call X strongly positively skewed relative to T if 

P(X>|x|)–P(X<–|x|)≥P(T>|x|)–P(T<–|x|), x
⟺1–FX (x)–FX(–x)≥1–FT(x)–FT(–x), x ≥0
⟺FT(x)–FX(x)>FX(–x)–FT(–x), x>0

If this relationship holds under weighting with T-probabilities, we obtain a weaker

version of relative skew:
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Definition 6

Let X*:=X-mX and T*:=T-mT. The weak x0-tail skew of X relative to T, is defined by

Skewx0
(X|T):=

∞
∫x0

FT*(x)–FX*(x))dFT*(x) – ∞
∫x0

(FX*(–x)–FT*(–x))dFT*(–x)

If x0=0, Skew(X|T):=Skew0 (X|T) will be called the weak skew of X relative to T. 

Using a change of variable, the following is immediate:

Proposition: If mX = mT, then Skew (X|T)=DT(X). 

The skew of a target distribution in the sense of (**) is an indication of the risk atti-

tude of the expressed preference. Skew in the sense of (**) and relative skew are dif-

ferent from statistical skew.

Median and Skew
As seen from the example above, relative symmetry does not contribute in either way

to dominance; the only source of dominance in such case is a difference in medians.

To distinguish their respective contributions to dominance, we will decompose the

generalised alpha value into a pure median portion and a skew portion:

Let X*=X-mX and X*=T–mT, we set

(a) αS
{T }(X )=DT*(X*)

(b) αm
{T }(X )=DT(X )–DT*(X*)

We then have α{T }(X )=αm
{T }(X )+αS

{T }(X ), i.e. the generalized alpha can be decomposed

into an alpha portion solely due to distributional dominance caused by the difference

in medians and an alpha portion due solely due to the relative skew.

Correspondence to Classical CAPM Alpha 
αm

{T }(X ) is the distributional correspondence of standard (CAPM) alpha. To illustrate

this correspondence, let T|B=b(x)=db(x), s.th. B acts as a direct benchmark. Assume

X=βB+α. 

Then for the Sharpe Ratio of X, SR(X ), we have: SR(X ) =        =SR(B)+ .

In other words, in the classical CAPM setting, X dominates B if α >0. In our approach,

if the CAPM-α > 0, then αm
{T }(X )> 0, so for Skew(X|T)=0, the dominance is equivalent

and hence αm
{T }(X ) corresponds to α. If, however, the skew is nonzero, DT(X) may differ

from the SR-induced dominance. The same holds true if T acts as a target for out-

performance with the information ratio replacing the Sharpe ratio.
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In general, when compared to classical performance measures of the form return/risk,

αm
{T }(X ) corresponds to the “return portion”, while the “risk portion” is reflected by

αS
{T }(X ). However, αS

{T }(X ) can reflect much more detail w.r. to risk attitude than any

typical risk measure. 

Lemma: Given two strategies X,Y and a target T. Assume T is symmetric and mT=0,
mX =0 and Skew(X|T)>0, Y is symmetric and mY >0. Let α=α{T }(X )=αS

{T }(X ) denote the

generalised alpha of X w.r. to target T. Then, 

(a)  DT+α(X )=0,
(b)  DT(Y )>DT(X ), if mY >α with equality for mY =α.

(a) follows from DT(X )–DT+α(X )=DT(T+α), (b) follows from the definitions.

The Lemma relates the dominance of pure outperformance in terms if standard, clas-

sical alpha to the dominance derived solely by relative skew.

� 4. Applications

The emphasis in the applications is on illustrating the methodology. Hence, we will

concentrate on general strategies or Hedge fund indices and rather simple target dis-

tributions. The real value of the method however, lies in evaluating single strategies

with more detailed and bespoke target distributions, which is beyond the scope of

this paper.

4.1 Clustering with a Market State Indicator as Benchmark
In the first application, the universe of strategies we consider is a set of Hedge Fund

styles, each represented by their corresponding HFR index. Specifically, we consider the

indices Global Hedge Fund, Equity, Equity Market Neutral, Macro, Distressed, Merger

Arbitrage and Convertible Arbitrage. We use the daily return series from January 1, 2006

to December 1, 2010.

Given the strategies’ benchmark-free, absolute return status, we use a market state

indicator as the benchmark. The indicator we use is based on the S&P 500 index and

distinguishes seven states: {very negative, negative, slightly negative, neutral, slightly

positive, positive and very positive}, defined via quantiles of the 5-day return series

of the S&P 500. For example, for the week starting November 16, 2008 in which the

S&P 500 lost 8.39%, the state indicator would be “very negative”, while for the week

starting September 6, 2010 with the S&P 500 return of 0,46%, the state would be

“slightly positive”.
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The targets will be defined via their conditional distributions, i.e. for each state by a

separate distribution. The conditional distribution of the strategies is taken by a kernel

approximation of their empirical data.

The samples we use will be the 3-day, 5-day and 15-day returns of the indices.

As a first quick illustration, we choose for the first two targets the following conditional

distributions: T1
|
B=b (x)=d0(x)1(b>0)  and T2

|
B=b (x)=d0(x)1(b>0) , which measure the degree 

to which positive returns overweigh negative returns in positive respectively negative mar-

ket environments. This produces the following simple cluster space for 5-day returns:

� Figure 2. Dominance Vectors and Induced Clustering by T1 and T2

Besides the clustering, what can be seen is that Merger Arbitrage is closest to a parallel

of the diagonal and hence most independent of the state of the market. The Figure

also shows that the strategies are closer to each other for the second target, s.th. for

negative market states, Merger Arbitrage would join the Distressed/EqMktNeutral/

ConvArb/Macro cluster. This also highlights the gain in information and detail when

moving to higher dimensions in dominance/cluster space by adding further targets.

For further detail, while still keeping the analysis simple, we add the following groups

of target distributions:

T3
|
B=b (x)~N(0,s)1(b={k}), k=1,.2,...7

T4
|
B=b (x)~N(E(X|B=b),s)1(b={k}), k=1,.2,...7

T5
|
B=b (x)~0.5[{“negative tail event”}+{“positive mean event”}]1(b={k}), k=1,.2,...7

T6
|
B=b (x)~0.5[{“negative mean event”}+{“positive tail event”}]1(b={k}), k=1,.2,...7

where N(0,s) denotes the normal distribution with mean 0 and standard deviation

s, E(X|B=b) denotes the conditional expectation of strategy X, given B is in state b

I N T E R N AT I O N A L
J O U R N A L  O F  F I N A N C E

A E S T I M AT I O
THE  I E B

I N T E R N AT I O N A L
J O U R N A L  O F  F I N A N C E

A E S T I M AT I O
THE  I E B

16

a
pp

lic
at

io
ns

 o
f 
st

at
e 

c
o

nt
in

ge
nt

 s
to

ch
as

ti
c 

o
rd

er
in

g 
m

et
ho

ds
 t

o
 t

he
 c

lu
st

er
in

g 
an

d 
Pe

rf
o

rm
an

ce
 m

ea
su

re
m

en
t 

o
f t

ra
di

ng
 s

tr
at

eg
ie

s 
G

la
ff
ig

, C
. H

.

Macro

ConvArb

EqMktNeut

Distressed

MergArb

Equity

GlobalHF

Ta
rg

et
 2

 (B
<0

)

Target 1 (B>0)

03. 02-23. Clemens OK_Maquetación 1  15/09/11  09:47  Página 16



and b={k} denotes that B is in state k, for k one of the seven states described above.

The tail events are the 10% and 90% quantiles respectively.

The target groups T3
|
B=b (x) and T4

|
B=b (x) measure degrees of bias/skew and to what

degree strategies dominate randomness in a state contingent way. We will use these

target groups for the 3-day, 5-day and 15-day strategy returns, incorporating not only

a sense of path dependence, but also the expectation, that strategies of absolute re-

turn character “build” their performance over time and a positive, market state inde-

pendent bias has to evolve – in other words, we want to see increasing dominance

with increasing return periods. The target groups T5
|
B=b (x) and T6

|
B=b (x) measure state

contingent tail skews in both directions. The dominance space is thus N=58 dimen-

sional. According to Definition 3 and the note following it, we cluster the strategies

by identifying a cluster preference matrix Σ. 

Figures 3 to 5 represent the resulting clusters by projecting the weighted dominance

vectors DΩ(B)(X )=Σ–1/2DΩ(B)(X ) onto the two-dimensional subspace (B<0;B≥0). We

have considered three different cluster preferences: Pref1: Indifference as to targets,

Pref2: Overweigh risk aversion, Pref3: Overweigh risk tolerance.

� Figure 3. Pref-1, � Figure 4. Pref-2, 
Indifference to Targets Risk Aversion

� Figure 5.
Pref-3, Risk Tolerance
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Selected conclusions:

� The Global Hedge Fund and HFR Equity Indices confirm their relative high

correlation to the S&P 500 by their position in Figures 3 to 5 (top left position,

dominance and market state co-monotonic).

� The Macro-, Distressed- and Equity Market Neutral Indices cluster close to-

gether in the simplified risk neutral projection of Figure 2.

� Increasing risk tolerance benefits mostly the Macro Index, while the distressed

index drops out of the previous cluster to the negative.

� Increasing risk aversion lets the Convertible Arbitrage Index drop to the negative

relative to the rest.

� The evolution of dominance when increasing the return period is best for the

Merger Arbitrage Index and worst for the Distressed and Convertible Arbitrage

indices.

� Overall, in these simplified projections, a measure of quality is closeness to

the top right corner. In this respect, the Merger Arbitrage Index comes out

best for the chosen setting of preference targets and projections.

In projecting the 58-dimensional dominance space to just two dimensions as the only

consideration, a lot of detail will be lost. But as the scope of this paper is to illustrate

the methodology, the illustration is kept short and simple. These conclusions reflect

the specific choices of targets and the specific aggregation reflected by the chosen

projections as given by Figures 3 to 5. The interest in the diagrams provided is in the

relative position of strategies to each other and their changes under changes in pref-

erence. Further targets and other aggregations will reveal further details of the indi-

vidual performance characteristics. 

4.2 Performance Ordering with a Market Index as Performance Benchmark
In this application, we consider a number of equity strategies, which we will evaluate

against an equity index as the performance benchmark. Specifically, we consider a

CPPI strategy on the € Stoxx 50 - floor at 90%, cap at 150%, multiplier of 5, annual

reset (“CPPI”), a passive strategy consisting of the index plus a short Collar (long Put,

short Call) on the index with option expirations of 3 months and rule based rolls

(“Index plus Collar”), the HFR Equity index (“HFR Equity”) and a rule based dynamic

short-put option strategy on the index (“Put Options”). The samples used are the

daily returns of the strategies, for the period from January 1, 2006, to December 1,

2010. As in the previous example, the targets are described by their conditional dis-

tributions. The conditional distributions of the strategies cannot be reliably estimated

by kernel methods from empirical data, as in this case, not enough data points are

available. Instead, we estimate the bi-variate copula between the strategies and the

benchmark and rely on the empirical distributions for estimating the marginals. 
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As can be seen from their respective empirical marginal distribution functions in terms

of broad distributional properties, all strategies are in essence “β−times” the index

for various levels of β, i.e. they are examples of pure Alternative Index Betas. In this

application we will derive various performance evaluations by mapping their domi-

nance vectors to the real numbers under different preferences. We consider the fol-

lowing conditional target distributions:

T1
|
B=b (x)=db(x)

T2
|
B=b (x)~N(b,s)(x)

T3
|
B=b (x)~N(b,s)(x)(1(b≤q3)(b)+1(b≤q4) (b))

where s is the standard deviation of the strategy distribution. T1 measure the degree to

which the median of the conditional strategy distribution exceeds b, T2 measures the

conditional out performance of random scattering around b. The difference of the dom-

inance over T2 and T1 indicates what portion of the T2 dominance is driven by the me-

dian and what is driven by skew. q3 and q4 are s.th. FB(q3)=1–FB(q4)=0.1 i.e. T3 measures

the dominance over random scattering around b, but only in cases of B-tail events.

Restricting the conditional targets to negative respectively positive b, yields positive

respectively negative dominance w.r. to targets T1 and T2 for all strategies, reflecting

a β of less than one for all strategies.   

To derive four preference based performance measures, we distinguish four different

preferences reflecting different attitudes towards risk, resulting in four different

weightings in mapping the dominance vector to the real numbers: 

Pref-1: Indifference w.r. to targets, equal weighting. Pref-2: Strong preference of tail

dominance, i.e. heavy overweight on T4. Pref-3: Risk averse, overweigh dominance w.r.

to negative b and overweigh dominance w.r. to left tails. Pref-4: Risk tolerant, overweigh

complementary to Pref-3. This results in the following ordering of the strategies:

� Table 1. Orderings produced by common Performance Measures 
and by Preference weighted Dominance Ordering

RANK TOTAL SHARPE INFORMATION PREF-1 PREF-2 PREF-3 PREF-4
PERFORMANCE RATIO RATIO

1 Index plus Index plus Index plus HFR Index plus Index plus HFR 
Collar Collar Collar Equity Collar Collar Equity

2 HFR Equity HFR Equity CPPI Put HFR HFR Put 
Options Equity Equity Options

3 CPPI CPPI HFR Equity Index plus CPPI CPPI CPPI
Collar

4 Put Options Put Options Put Options CPPI Put Options Put Options Index plus 
Collar
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Not surprisingly, different weightings for the preferences will eventually lead to dif-

ferent orderings specifically when strategies like in this case are, from a distribu-

tional view, unlevered versions of the benchmark. The increased weighting of risk

tolerance at the cost of risk aversion profits the Hedge Fund index and hurts the

Collar strategy, as the short calls cap upside participation. Given the choice of tar-

gets, Pref-1 with its equal weighting of preferences emphasizes the degree to which

strategies dominate or outperform random scattering around the benchmark, i.e.

the degree of systematic outperformance. With this view, the HFR Equity index fares

relatively better than under performance evaluation by Sharpe – or Information ra-

tios. Under Pref-1, with its target – and risk indifference and Pref-4, with the over-

weight on risk tolerance, the dynamic option strategy ranks clearly higher than in

all other orderings, suggesting it to be much more a “pro risk” strategy, in contrast

to what the strategy looks like in calm markets, where it behaves more like a low

volatility alpha generator. Note that the period under consideration includes Sep-

tember/October 2008, where the asymmetric return profile of un-hedged, short put

option strategies becomes apparent. In other market phases, the comment in the

introduction about distorting the Sharpe ratio by this type of strategy applies.

As before, while those illustrative conclusions and orderings can also be obtained by

simpler performance measures, the formulation of preferences and wealth of detail

attainable is substantially larger in this approach.

� 5. Comparison to common 

Performance Measures and Clustering Techniques

A measure of the performance quality of a trading strategy is not an absolute truth,

but is relative to individual investor’s perception. While common performance

measures are typically preference free and strictly risk averse, the stochastic ordering

methods as introduced in this study allow for a graded and state contingent attitude

towards risk. Moreover, it is an approach without any restrictions as to which pref-

erence and state contingencies are included. It is this feature which distinguishes

this approach from common methods and makes it a useful tool for practical ap-

plications in asset allocation, portfolio construction and analysis. The result can

be seen in Table 1 of the last application, where the produced orderings under vary-

ing preferences are compared to three common performance measures (total re-

turn, Sharpe ratio and information ratio). Specifically, the preference set Pref-4,

reflecting a risk tolerant attitude produces a completely different ordering over the

same time period, than the common measures. Dominance weighted performance

ordering yields different results than previous approaches due to its sensitivity to

bespoke preferences.  a
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With respect to clustering, the most common approach to cluster trading strategies

is by allocating funds to benchmarks or style classes, with no specific regard of realized

performance characteristics.  To the author’s knowledge, there have been no previous

approaches to the state contingent, preference based clustering of trading strategies. 

� 6. Conclusions

The paper illustrates a methodology to cluster and evaluate trading strategies, ad-

dressing a number of inefficiencies of previous and common methods. It uses infor-

mation obtained by comparing the full return distribution of a trading strategy to

distributions of state contingent targets, reflecting specific preferences, using a version

of weak integral stochastic dominance. It thus separates trading strategies by distin-

guishing their state contingent and preference based performance characteristics. 

Specifically, this allows including a diverse range of preferences w.r. to tail behaviour

and different attitudes towards risk, particularly a state contingent preference of risk

aversion and tolerance. The methodology does not rely on any distributional assump-

tions and can detect non normality and any sort of skew or moment related distrib-

utional characteristic. It also allows including and reflecting path dependencies

In addition, expressing preferences via target distributions by stating how returns

should scatter around a benchmark or ought to behave in different states of the mar-

ket environment is very intuitive and easy to formulate. 

While the methodology is very flexible to include all kinds of contingencies and pref-

erences and is thus able to distinguish and differentiate performance characteristics

to very fine detail, it does potentially have a large number of degrees of freedom. As

such, while it is an ideal tool to gain insight into the finer details of trading strategies,

it is not a quick way to obtain a rough overview of performance quality. 

Another application only briefly highlighted is the replication of trading strategies. 
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