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Abstract 

 
This article proposes a method to optimize portfolios of hedge funds, taking investor 

preferences as the starting point to define an objective function that will be flexible enough 
to include general investor preferences. In particular, we can include path- and market-
dependent objectives. The article also develops a method to produce a forward-looking data 
set on which the optimization can be based. Our method is also particularly apt for a case 
when a portfolio of hedge funds is used as an overlay. We compare this approach to classical 
optimizations on empirical data to highlight the effects of the additional degrees of freedom 
we have included. 

 
 
 

Investor’s Choice: 
An Investor-Driven, Forward-Looking Optimization Approach  

to Fund of Hedge Fund Construction 
 
Introduction 

Portfolio construction and optimization has attracted a vast amount of research 
through the last decades, and is now embedded into a well developed mathematical 
framework. The classical portfolio optimization approach is concerned with a universe of 
standard assets and how to combine them into a portfolio that maximizes investor utility 
under general constraints relative to some perception of risk. Most frequently, the result is 
a type of mean-variance optimization. The typical form of utility functions and the 
definitions of risk, however, need to conform to demands of general acceptance and ease of 
solvability. Little room remains for individual investor preferences and risk perceptions.  

With the evolution of financial markets, however, standard assets are being 
supplemented by various alternative assets. Hedge funds in particular differ in content and 
behaviour from classical assets and funds. There is currently considerable interest among 
practitioners in the problem of portfolio construction and optimization based on these new 
assets and trading styles. With hedge funds as the portfolio constituents, any deficiencies of 
the classical approaches become even more pronounced.  

In this article, we deviate from the traditional approach by making investors’ own 
preferences the starting point of our optimization. Our set-up of objective function and 
constraints is fully flexible to reflect path- and market-dependent preferences. Specifically, 
we let the investors decide what constitutes risk, because not all forms of risk are equally 
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undesirable. Often, perceived risk is a function of current wealth (or accumulated profit) and 
of the state of other markets. The price we pay for this flexibility is that a simple analytical 
solution to our optimization problem is typically not derivable. We will solve the 
optimization by using a heuristic search method, in this case, a genetic search.  

The issue in simply extending methods of classical portfolio optimization to hedge 
fund portfolios is twofold. On the one hand, for portfolios of classical assets, assumptions of 
market behaviour translate easily into the corresponding behaviour of the assets to be 
included in the portfolio; this is not the case for alternative assets and hedge funds. Under a 
future return scenario for major markets, hedge fund returns are not at all clear.  

In order to draw conclusions about the behaviour of hedge funds from specifications 
of major market behaviour, it is necessary to better understand the fund’s strategies. In 
other words, we need to understand the fund’s “mapping” from a specific market situation 
into trading action. As a consequence, obtaining reliable forward-looking data turns out very 
difficult. So producing a forward-looking data set on which the optimization can be 
performed is much more problematic than it is for classic portfolio optimization. 

On the other hand, however, alternative assets and trading strategies depend in a 
non-linear and asymmetric way on underlying markets, so the classical mean-variance 
approach for portfolio optimization is inadequate. Risk is not properly reflected within this 
framework. Progress has been made by considering utility functions that depend on other 
measures of risk, such as VAR, CVAR, and downside risk (see, e.g., Morton, Popova, and 
Popova [2004] and De Souza and Gokcan [2004]). Or, because many hedge funds exhibit 
considerable skew and kurtosis, by using a four-factor, mean-variance skew kurtosis utility 
function (see Davies, Kat, and Lu [2004]).  

However, as we have noted, it is much more important with alternative assets to 
allow for objective functions and definitions of risk that reflect investors’ own risk 
preferences. For most investors, risk perception varies with market developments and with 
the performance of their other assets. None of the standard approaches reflects the 
necessary path and market dependence.  

With regard to the data set underlying our optimization, we use a mixture of 
forward-looking and historic data, and formulate a market view on patterns of general 
market behaviour for the future (or a weighted partition of views). We then return to the 
historic data set and select those periods of time “closest” to that pattern. The difference is 
that, in the pure forward-looking approach, which is based on a regression against style 
factors or strategy learning algorithms, one has complete freedom with regard to the 
specification of future market developments. The fund behaviour in this situation comes as 
an approximation/optimization from the past, and hence can only be approximately correct.  

In our approach, the data is a close approximation of our modelled/assumed 
scenario (as we search for past periods with market developments close to our 
specification), but the behaviour is precise. In spirit, our view is forward-looking by ensuring 
that the “mapping” problem (mapping market behaviour into hedge fund behaviour) is 
circumvented by having history solve it for us.  

We split the optimization into two parts: 1) the data set, and 2) the methodology. 
 
The Data Set: Defining Market Patterns 

The data set underlying the optimization is of crucial importance for the results. As is 
well known from classical mean-variance optimization, slightly different data sets underlying 
the optimization can produce vastly different portfolio decompositions. In the case of 



 3 

alternative assets and hedge funds, one of the following four approaches for data sets 
underlying the optimization has typically been used. 

 
1. Historic Data 
Much of the fund of hedge fund optimization is performed on the basis of historical 

data. The advantage is that data for the behaviour of hedge funds are objectively available, 
so all the risk parameters and statistics can easily be computed. However, if history does not 
more or less precisely repeat itself, the optimization becomes useless for construction 
purposes. For example, stop loss or limit behaviour may not become obvious for the 
underlying data set, but it may dominate the fund’s behaviour subsequently. Or, trends may 
have fed the performance in the past, but subsequent sideways market movements may 
steer the investment managers toward more risk.  

 
2. Simulations 
If we know the return distribution of a fund, we can perform a simulation. However, 

historically fitted return distributions are a statistical summary of past behaviour, an 
interpolated historical frequency count of returns. Given that hedge fund returns are highly 
non-stationary, this approach suffers from similar defects as historical data because future 
return distributions may look completely different. In addition, while it certainly makes 
sense to allow for heavy-tailed distributions, they should be truncated to reflect stop losses, 
which are “hard-wired” into the risk procedures of many hedge funds. This fact is often 
ignored in simulations.  

 
3. Future Projections 
We could use future projections of hedge fund returns conditioned on market 

behaviour in conjunction with a Black-Litterman type of approach. Here, the future 
behaviour of the primary markets influencing a given hedge fund is weighted according to 
its plausibility to the investor. The success of this approach depends on the way market 
behaviour can be related to hedge fund behaviour (the mapping problem), i.e., the degree 
to which one is able to extract the dynamics of the fund and the strategies employed by the 
fund.  

4. Partitioning of History 
The partitioning of history approach tries to combine the advantages of (1) and (3). It 

forms a collection of likely market developments, each attached to the investor’s probability 
of occurrence. It then goes through history selecting periods of time that fit the individual 
market patterns and performs the optimization on the data set. 

We use the “partitioning of history” method, which classifies historic data into 
predefined market patterns, for our optimization. We choose the pattern or weighted 
average of patterns that we (or the investor) deem most likely for the future period. The 
chosen patterns can include scenarios that may be problematic for the other assets the 
investor is holding. In that context, this method will be valuable if the portfolio being 
constructed is to be used as an overlay to an existing, classical portfolio. 

To illustrate this method, we need to define market patterns. The more formal 
approach we take to describe a pattern is justified because a market pattern like “up-trend” 
can be defined in a variety of ways into a set of conditions on market prices over a specific 
time period. This again can lead to very different data sets for the same targeted pattern, 
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and hence to very different optimal portfolios. We therefore define a pattern class, a set of 
time intervals over which the market behaviour is “close” to the desired pattern. 

A pattern could be defined by specifying a market M and a pattern period T, and 
defining a set of rules that market M must fulfil starting from some initial time t  and ending 
at t + T. The set of rules could be expressed via a product of indicator functions, expressing 
the fulfilment of the rules. For example, a continuous upward pattern could be defined by 
the product of indicator functions 

 

            TtM1TtM2tM1tM1tMtM 111         (1) 

 
More generally, we define a pattern by first specifying the number d of different 

markets, which will be part of the definition (e.g., if we use the S&P 500 index, the ten-year 
U.S. Treasury rate, and the USD-EUR exchange rates, it would be 3d  ). The length of the 
pattern, T, is chosen to correspond to the period in the future that we construct the 
portfolio. We denote t as a time scale that is coarse, such as a weekly or monthly time scale, 
where s denotes smaller time scales such as daily or more frequent.  

Patterns are defined by describing the behaviour of certain statistics on a coarse 
scale and aggregating information from small scales, e.g., a weekly maximum of a market is 
typically aggregated by taking the maximum over all tics of that market during a week. Here, 
t denotes one week, and s indicates a specific tic within a week. 

We define a set of m statistics/functionals that we apply to the individual markets to 
enter the pattern definition: 

 

      ,t,1ts;sMFt,iX ikk  with    m,...,2,1k,d,...,2,1i    (2) 

 

Each Xk(i, t) aggregates and maps the information of market iM  for time interval (t – 

1, t] into a real number. Functions Fk determine the statistics of the markets to be used. 

Common examples include Xk(i, t): = max (Mi(s), s  (t – 1, t]) or Xk(i, t): = min (Mi(s), s  (t – 
1, t]), the maximum or minimum of the i-th market during the time interval (t – 1, t]. 

A T-period market iM  pattern starting at time t0 is defined by a map from  

 1,0mT  : 

 

           1,0Tt,...,2t,1tt,t,iX,....t,iX,t,iX:T,tPM 000m21oi    (3) 

 

Definition: A time interval [t0, t0 + T] will have T-period pattern ,PMi  if for PMi: 

 1,0mT  . 

  1T,tPM 0i            (4) 

 
A general T-period pattern P starting at time t0 for markets M1 to Md will be defined as 
follows. 

 
Definition: A time interval [t0, t0 + T] will have d-market, T-period pattern P, if for 

P:  1,0dmT   

 

    1T,tPM:T,tP 0ii0          (5) 
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The definition of P represents the rules that combine the functionals and statistics as 

defined by Xk into a temporal pattern. 
 
Example  

Let d = 1, m = 3 For t  {t0 + 1, t0 + 2, ..., t0 + T},   

       tM:t,lts,sMFt,1X 1111   

         t,lts,sMmax:t,lts,sMFt,1X 1122       

         t,lts,sMmin:t,lts,sMFt,1X 1133      (6) 

If we then let P be given by the indicator function 

          TtX...2tX1tX1T,tPMT,tP 0k0k0kk010    (7) 

 
we have defined a pattern by which the successive closing levels, the successive highs and 

the successive lows of the market M1, are each increasing over the time interval  Tt,t 00  , 

which would be a definition of a solid upward trend of market M1 . 
 
 
For practical purposes, it is also useful to define pattern classes as time periods, 

which may not have a predefined pattern, but are close. The use of pattern classes ensures 
that the set of time periods classified is not too small. It also serves the stability of solutions 
for our optimization method, as slightly different pattern definitions may lead to very 
different optimal portfolios. 

We note that with each d-market pattern P, we can associate the d maps PMi 

defining P, and to each of these maps, we associate a subset i  mT by 
 

      1T,tPMT,t
1

0i0i


         (8) 

 
We then define  
 

             m

imi2i1i t,lts;t,lts;sMF,...,sMF,sMFtZ   

             t,iX,...,t,iX m1         (9) 

and 

        mT

iiii TtZtZtZTtZ  0000 ,...,2,1,      (10) 

 
We define pattern class P as those periods for which market behaviour, as encoded 

by     TtZ,...,TtZ 0d01 , is close to the (dmT)-dimensional set (1(t0, T), 2(t0, T), …, d(t0, 

T)) dmT. 
 

Definition: The time period  Tt,t 00  is said to belong to  -pattern class P, if 

 

     T,tZT,t 0i0ii        (11) 

where   corresponds to the Euclidian distance in mT . 
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The set of all time periods belonging to  -pattern  class P will be denoted by [P] . 

Note that: 

 A time period can belong to more than one pattern class. 

 If history must be partitioned into a family of pattern classes, we can easily use a 
kernel-based classification instead of the above definition. 

 
The Methodology: Investor-Driven Objectives and the Optimization Algorithm 

The methodology used for most traditional optimizations is largely influenced by the 
desire to solve problems analytically. The mathematical theory of constrained optimization 
is well developed and can accommodate the more obvious constraints like integer 
constraints for investment sizes as well as non-linear objective functions. But adding more 
customized preferences will require numerical procedures or search algorithms. 

Our approach is driven by translating all the preferences of a specific investor into a 
quantitative framework, without any restriction on the functional form of these 
preferences. As the perception of risk is not unique, we will not limit ourselves to a 
predefined and dogmatic definition of risk via volatility, semivolatility, VAR, CVAR, or 
downside risk. We allow the investor to choose what he or she perceives as “risk” by 
essentially allowing him or her to decide which scenarios to avoid.  

We will reflect strict boundary conditions via constraints on the optimization. We 
also build preferences into the objective function, penalizing scenarios to be avoided and 
rewarding desired scenarios. Specifically, we allow scenarios that depend on the return 
history of the portfolio, on the market environment, or on any other form of path 
dependence. Restrictions like the minimum number of portfolio members, leverage 
conditions, and maximum fund allocation can easily be accommodated and will be reflected 
in the constraints. 

We consider portfolios 
 

 Port     tFwt, ii         (12) 

 

where the  tFi are the funds to be considered for inclusion valued at time t, 1, w2, 

…, wN) is the vector of weights, constant throughout the specific future investment period 
for the individual funds within the portfolio. 

 
The Objective Function: The Sum of All Fears  
The investor preferences will be reflected in the objective functions via rewards and 

penalties. The objective function to be maximized is 
   

      t,1t,Obj Siii        (13) 

where 1{Si} is the indicator function for Si, which denotes the i-th situation rewarded ( 0i ) 

or penalized ( 0i ). Si may be time-, path-, and market-dependent. Given that any 

continuous function can be approximated by step functions, this form is more general than 
any of the classic utility functions.  
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Examples 
For all examples, we assume the investment period is from t0 to t0 + T. Typical Si 

include:  

 Si = {the portfolio return over the target period [t0, t0 + T] is between Ri  and Ri}, 

with i , e.g., equal to a concave function of 1iR   or constant. Then: 

 

    iSii t,1    

 if 
     

 ii RR

tPorttPortTtPort

,

,,,

1

000



 
 

 and Ttt 0   

 0 otherwise         (14) 
 

 Si = {negative tail co movement with market M over period    Tt,tt,lt 00  , 

characterized by: 
 

        ytRMxtRiSii 11t,1
         (15) 

 

where   xtR1   denotes the indicator function for event R(t) ≤ and R(t) is the 

portfolio return over period [t – 1, t]. 1{│RM(t)│≥y} denotes the indicator function for the 
event │RM(t)│≥ y, where│RM(t)│is the absolute value of the return of market M over 
the period [t – 1, t], x and y to be specified, so that 
 

   iSii t,1    if   xtR  and   ytRM   

  0 otherwise      (16) 
 

 Si = {the portfolio return over period [t – 1, t]  [t0, t0 + T] is between Ri-1 and Ri, and 
the accumulated portfolio return over period [t0, t] is larger than x} 

  

     xt,1 iSii   if 
     

 ii RR

tPorttPorttPort

,

1,1,,

1

 
 

  and       xt,Portt,Portt,Port 00    

  0 otherwise      (17) 
 
 
The Constraints – the Aggregation of “Hard” Exclusions 
The constraints will summarize the scenarios we exclude. We list only a few 

examples, which typically include: 
 

 Non-negativity of weights, i.e., 0wi  . 

 Fully invested portfolio or no leverage, i.e., ∑wi = 1 or ∑wi ≤ 1. 

 The maximum share of individual funds, i.e., max (wi) ≤ A. 

 The minimum number of funds in which the portfolio is invested. 
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 Any hard stop loss that is potentially contingent on other markets. 

 Minimum investment sizes. 
 
 
The Path to Optimization 
The optimization proceeds as follows. Let [t1, tn] denote the time period for which 

we have reliable historic data for all the funds we want to consider. Let T denote the period 
into the future for which the portfolio is to be constructed and over which the portfolio 
weights will not be changed. We first define a T-period pattern P for the market 
development in the future, according to the definitions above, by specifying a set of defining 
markets Mi and statistics Fk (we restrict ourselves to a single pattern, optimizations over a 
weighted average of patterns works analogous).  

Within [t1, tn], we consider all connected T-period time intervals, from which we 
select those in pattern class [P]  for pre specified  . We allow different periods to overlap 
by a pre specified maximum number of time intervals. The members of this set of connected 
T-period time intervals will be close to the originally defined pattern P, and will serve as the 
data set on which our optimization is based. 

The optimal portfolio is found by maximizing the sum of the objective functions over 
all T-period intervals belonging to pattern class [P] with respect to weight vector  : 

 

               u,ObjMax:OMax Tt,...,2t,1tuPTt,t     (18) 

 
where the inner sum runs over all time steps u within a given T-period, the outer sum runs 
over all T-periods in pattern class [P], and the constraints C are satisfied. 

We use a genetic search algorithm to solve the problem. We recommend that 
readers not interested in the specifics of this algorithm skip the next section and move on to 
the empirical analysis section. 

 
Search Algorithm 

In our genetic search algorithm, each portfolio Port    is represented by its weight 

vector  . The algorithm produces an initial population G of portfolios, each represented by 
its weight vector. All the portfolios within the population will compete against each other, 
and must fulfil the constraints.  

Let iF  denote the i-th fund of the pool of admissible funds, and let  (n, j) denote 

the weight vector, representing the n-th portfolio of the j-th population,   Nj,n   with 

 

        j,n,Nw,...,j,n,2w,j,n,1wj,n       (19) 

 
where w(i, n, j) = the weight of the i-th fund Fi.  
 

The first population of portfolios is generated with random w(k, n, l)k, n. After the 
objective function of all portfolios corresponding to the  (n, 1) of the first population is 
evaluated, we choose the two with the highest objective functions in order to generate the 
next population (ties are broken by random choice). In the literature, a number of 
alternative selections, e.g., tournament selection, are discussed. The next generation is 



 9 

generated from the top two portfolios (“the parents”) by using the following genetic 
operators: 

 
Crossover: We randomly select a coordinate k. Then we generate a portfolio of the 

new generation by taking the first k portfolio weights from the first top portfolio and the 
remaining N  k from the second top portfolio. A second new portfolio is generated the 
same way by interchanging the two top portfolios and applying the same procedure. 

 
Mutation: We randomly change a portfolio weight with a predefined probability. 

The two top portfolios of a given generation will always be members of the next 
generations. Genetic operators are applied to the parents of a given population, until the 
number of the new population is G  2. The new population then consists of the G 2 new 
portfolios and the old parents. This procedure is repeated until a termination condition is 
fulfilled or after a fixed number of generations. The portfolio in the last population with the 
highest objective function is termed the “optimal portfolio.” 

 
Note that a number of refinements to the genetic operators are useful: The 

algorithm should find a good balance between local search, i.e., local optimization, and 
exploration, i.e., exploring other regions of weight space to avoid being trapped with local 
maxima. Both previously mentioned operators can also be split into fine and broad search 
sections by restricting crossover to interchanging. For more details, see Banzhaf, Nordin, 
Keller and Francone [1998] or Weicker [2002]. 

 
Empirical Analysis: Exhibiting the New Degrees of Freedom 

This section compares results for different classical approaches to the above 
approach. The emphasis here is not to determine superiority, but to illustrate the flexibility 
of the different approaches and how changes in optimization parameters influence the 
resulting optimal portfolio.  

For all approaches, we let the obtained optimal portfolio run over a forward-looking 
period, i.e., we analyze out-of-sample performance. For our universe of hedge funds, we use 
a set of CSFB/Tremont hedge fund indices, which represent the following trading styles: 

 

 Global Macro 

 Convertible Arbitrage 

 Equity Market-Neutral 

 Distressed 

 Event-Driven 

 Fixed-Income Arbitrage 

 Dedicated Short 

 Long/Short Equity 

 Managed Futures 

 Emerging Markets 

 Risk Arbitrage 
 

Clearly, this universe of assets is not an optimal base from which to set up a realistic 
portfolio. However, for our analysis this is essentially unimportant. We want to emphasize 
the workings of our method and demonstrate the effects of its individual degrees of 
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freedom. We use monthly data, even though most hedge funds nowadays provide daily 
performance data. 

We construct our portfolio based on information before December 31, 2004. Our 
investment horizon is six months, i.e., a portfolio left unchanged from January 1, 2005-June 
30, 2005. Over that six-month horizon, the various individual indices we consider as our 
funds have performed as follows: 

 
   Equity   Fixed- 
 Global Convertible Market-  Event- Income 
 Macro Arbitrage Neutral Distressed Driven Arbitrage 

Return (%) 2.97 -6.34 1.45 4.09 3.60 -1.12 
Max Mthly DD (%) -0.25 -3.13 -0.34 -0.06 -0.64 -1.24 
Max DD (%) -0.25 -7.42 -0.56 -0.06 -0.64 -2.39 
 
 Dedicated Long/Short Managed Emerging Risk 
 Short Equity Futures Markets Arbitrage 

Return (%) 13.42 0.86 -0.91 5.62 1.02 
Max Mthly DD (%) -5.91 -1.55 -5.39 -1.88 -0.54 
Max DD (%) -6.12 -2.69 -5.39 -1.88 -0.54 
 

 
where Max Mthly DD denotes maximum monthly drawdown, and Max DD denotes 
maximum drawdown over the period. 

We run three different classical optimizations, characterized by their respective 
objective functions: 

 

CL1:  VolR           (20) 

 
where R = portfolio return over the period, Vol = ∑│Ri│, Ri = the return of the portfolio in the 
i-th month of the period, and   is a parameter. 
 

CL2:  SemivolR           (21) 

 
where R = return of the portfolio over the period, Semivol ∑min(Ri, 0), Ri is the i-th 
monthly return of the portfolio in the period, and   is a parameter. 

 

CL3:  MaxDDR           (22) 

 
where R = the portfolio return over the period, MaxDD = the maximum drawdown of the 
portfolio during the period, and   is a parameter. 

 
 

We run all these optimizations under the same set of constraints: 
 

 Non-negativity of weights, that is., wi ≥ 0. 

 No leverage, that is, ∑wi ≤ 1.  

 The maximum share of individual funds must equal 25%, that is, max (wi) ≤ 25%. 

 The minimum investment size is 1% of the total portfolio. 
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We run the optimizations of CL1, CL2, and CL3 over the data set, which consists of the last 
sixty months before our starting point, that is, a purely historic data set. 

The performance results over the six-month period immediately following the 
optimization period and the obtained weightings for the indices are as follows (all numbers 
in percent): 
  Max 
  Mthly Max 
 Return DD DD GM CA EMN D ED FIA DS LSE MF EM RA 

CL1   = 1 1.07 -0.45 -0.64 25 13   25 10 0 0 0 0 0 0 0 

CL2  = 1 1.85 -0.78 -0.99 11 11   25 13 14 16 7 0 1 1 1 

CL3   = 1 2.11 -1.08 -1.09 15 13   22 0 21 16 11 0 0 2 0 

 
Note: The remaining cash was invested at LIBOR flat. 

 
In general, the specific penalty form of the classical approach -- here a form of 

volatility, semivolatility, and drawdown - weighs the historic behaviour over the entire 
history under that very specific penalty. For example, the index for distressed funds had a 
large drawdown in the fall of 1998 during the Russian crisis, which resulted in a high penalty 
and low weight specifically within CL3. Conversely, throughout time, the low volatility of 
that index led to a large weight under CL1.  

Moreover, funds (or indices here), were excluded due to a bias in the data set. This 
may not at all reflect an investor’s expectations of future market behaviour. Additional 
preferences such as including or excluding certain sectors must be considered on an ad hoc 
basis by restricting the universe of admissible funds for the portfolio. Note that a number of 
pure (i.e., 100% weighted) “fund” investments perform better than any of CL1, CL2, and CL3 
on a risk-adjusted basis over the out-of-sample period. These disadvantages of the classical 
models would also prevail in simulation approaches. 

For comparison, we run various models under the new methodology. We group 
them first according to which six-month market patterns we want to use to optimize the 
portfolio. We define three simple patterns: 

 
Pattern A: For a given six-month period, the S&P 500 has at least four months of 
successively lower monthly highs and lows ( a downtrend). 
 
Pattern B: For a given six-month period, the S&P 500 has at least four months of 
successively higher monthly highs and lows (an uptrend). 
 
Pattern C: For a given six-month period, the credit spread of Euro BBB Corporate 
Bonds has three up and three down months. 
 
We run our optimizations on six-month time periods that each have the specified 

pattern (note that in this simple analysis we do not use pattern classes). We allow overlaps 
of up to three months, i.e., the starting month for two time periods of the same pattern 
must be at least three months apart. We use data from January 1, 1994-December 31, 2004 
to select the six-month time periods. 

Pattern A corresponds to a downtrend in equities. The market of our horizon period, 
from December 31, 2004-June 30, 2005, exhibits pattern A. Consequently, our horizon 
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period does not have pattern B, which corresponds to an equity uptrend. Pattern C 
corresponds to a sideways movement in credit spreads. The horizon period also exhibits 
pattern C.  

 
For each pattern, we run optimizations under different objective functions. 
 
Pattern A: 
Obj A1: The portfolio return over each six-month period in the data set, plus a 
penalty of 0.50% for months the portfolio return is below 4% while the S&P 500 
return is larger than 3%. 
 
Obj A2: The portfolio return over each six-month period in the data set, plus a 
penalty of 0.50% for months the portfolio return is below 4% while the BBB 
corporate bond spread increases more than 25%. 
 
Pattern B: 
Obj B1: The objective function is the same as in A1. 
 
Pattern C: 
Obj C1: The objective function is the same as in A2. 
 
The objective functions are obviously somewhat randomly chosen. But our purpose 

is to demonstrate the effects of using different data sets to underlie the optimization and 
the effects of reflecting different preferences within the objective functions.  

The A1 objective function balances pattern A. The pattern of an equity downtrend 
strongly favours a negative correlation to equity markets, but the penalty term of the 
objective function limits the correlation between negative portfolio return tails and positive 
equity return tails. 

The A2 objective function limits the correlation between negative portfolio return 
tails and the tails of credit spread widening, and thus retains its corporate bond-friendly bias 
even during an equity downturn. While downturns in equity markets generally correspond 
to widening spreads, this is not necessarily true for “soft” downturns. In this sense, the A2 
objective function favours soft equity downturns (downturns via the defined pattern, 
filtering out the soft downturns via the objective function). All of these optimizations will be 
run under the same set of constraints as before. 

The following table gives the performance results over the six-month period January 
1, 2005-June 30, 2005, as well as the obtained weightings for the indices (all numbers in 
percent): 
  Max 
  Mthly Max 
 Return DD DD GM CA EMN D ED FIA DS LSE MF EM RA 

A1 4.27 -0.85 -0.85 25 0    0 2 0 0 25 0 25 0 0 
A2 3.48 -1.49 -1.49 25 14    2 0 1 0 25 0 11 0 0 
B1 2.72 -0.25 -0.25 25 0    0 25 2 0 0 15 0 7 1 
C1 2.15 -0.26 -0.26 25 5    1 25 3 0 0 6 0 1 0 
 

 
We make the following observations: 
 



 13 

 Patterns matter. The right pattern versus the wrong pattern, A versus B, results in a 
clearly superior performance for A1 and A2 (although drawdown was not part of our 
objective in this example). It also confirms that the chosen portfolio reflects the 
pattern. A1, assuming an equity downtrend, weighs the dedicated short at the 
maximum allowed (25%), while B1 weighs it at its minimum allowed (0%). The 
classical approaches have weights somewhere in between because of drawdown 
reduction effects and the fact that the data set (the sixty months preceding 
December 31, 2004) displays extended periods of equity upturns and downturns. 

 The long-short equity index has a 0% weight for downtrend patterns A1 and A2 due 
to its long bias. This is a part of the uptrend pattern in B1, but plays no part in 
classical approaches due to bias in the data set (more severe equity downturns 
overall). 

 The distressed index carries full weight under B1 and C1, as their data sets exclude 
the problematic periods of that index and make use of their consistently good 
performance outside market downturns. 

 Managed futures are included for A1 and A2, as they do relatively well in equity 
downtrends. That relative advantage diminishes, however, if more equity uptrends 
enter the data set. 

 The added penalty in the objective function A1 results in the omission of some of the 
indices with high negative tail correlations. Changing the objective function from A1 
to A2 to reflect a corporate bond-friendly bias results in consideration of the 
convertible arbitrage index, which contains a corporate credit feature.  

 
These are only a few observations about some variations in the full flexibility of our 

new approach. However, it is clear that our approach greatly increases the number of 
degrees of freedom compared to classical approaches. Different assumptions about future 
market developments translate directly into different portfolio decompositions, while the 
use of pattern classes ensures that similar future pattern definitions produce similar or the 
same optimal portfolios. Changes in the objective function that allow us to consider 
individual investor preferences are reflected in the optimal portfolio. 

 
Conclusions 

Our methodology for constructing a portfolio of hedge funds starts from investor 
preferences and aversions and defines a fully flexible objective function and set of 
constraints. We have thus addressed some of the deficiencies of previous approaches, in 
which individual preferences and risk perceptions are subordinated to general definitions of 
objectives and risk. This flexibility allows investors to base risk/return objectives on path- 
and market-dependent measures, and to express preferences about markets or trading 
styles to be included in the optimization, rather than having them arbitrarily imposed ex 
ante. Thus the translation of investor preferences into portfolio weights is inherent within 
the optimization. This feature is what gives our approach a clear edge over classical 
approaches. 

Moreover, we have combined a forward-looking approach with historical 
information on conditional hedge fund behaviour to produce a data set underlying the 
optimization. Investors can thus base their optimizations on a pattern of future market 
development for which reliable data on hedge fund behaviour exists, without the 
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problematic use of historic data (pure or in simulations via historically derived distributions), 
or of the unreliable projections of conditional future hedge fund behaviour. 

However, the price of this flexibility is the need for more elaborate search algorithms 
to solve the optimization problem. We use a genetic search here for its ease of 
implementation and its effectiveness in expressing constraints, but any other successful 
search algorithm will also do (see Schlottmann and Seese [2004] and references therein). 
The disadvantage of our data set is that we can only use past or close to past patterns. 
Reliable methods for predicting conditional hedge fund behaviour would not suffer from 
this restriction. But practitioners must decide which method is preferable to produce the 
data set underlying the optimization: using patterns that are close to past patterns and thus 
have more reliable data, or using the full flexibility to define a future pattern with 
potentially unreliable predictions about future hedge fund behaviour. 
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