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Abstract

The article investigates the use of adaptive learning algorithms in constructing dynamic
portfolios replicating the return characteristics of a given hedge fund. The emphasis is on out of
sample conditional predictive capabilities as necessary to serve as a valuable risk management
tool, rather than simply explaining hedge fund behaviour over an in sample period. The
algorithms learn dynamic trading rules and strategies along with which factors to base those
on within an integrated learning mechanism. It thus generelaizes previous approaches by
exploring a wide class of nonlinear and dynamic trading strategies to participate in explaining
and predicting hedge fund behaviour. The conditional predictive capabilites of the algorithms
can specifically be employed to quantify future fund behaviour. It will be useful in constructing
quantitative risk measures for individual hedge funds. The article also provides some
empirical data for the out of sample behaviour of this method.
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1. Introduction
Supported by the recent meltdown of the major equity markets, alternative assets and
trading styles have moved further into focus of institutional investors. Specifically hedge
funds now form an integral part of the asset allocation of most major institutional
investors. However, the hedge fund crisis of 1998 has left its marks in the form of
increased demands to understand inherent risks and install mechanisms to quantify and
manage those. Given the sparse data, their dynamically changing exposure to markets
and lack of full transparancy of a lot of hedge funds, classical risk measures, like
empirical VAR, will be difficult to derive and often not properly account for potential
hedge fund risk. In some cases the use of classical risk measures even turns out
counterbeneficial. More advanced methods to analyse and quantify hedge fund risk,
both on a stand alone and marginal basis, are necessary.

1.1 Previous work
Considerable research has been conducted on the analysis of Asset Based Style Factors
(“ABSF”), the main driving factors for managed portfolio returns. Sharpe (1992) used
the analysis of ABSF to explain the behaviour of mutual funds. The extension for hedge
funds included behavioural factors (like the ability to go long and short) and factors, that
are not directly tradable (like volatility), see e.g. Schneeweis & Spurgin (1998, 1999) and
Fung & Hsieh (1997). These appoaches provided a further understanding, which factors
besides the underlying markets drive and influence a hedge fund’s behaviour. In contrast
to mutual funds, which often depend on a few factors mostly in a linear and stationary
way, Hedge Fund return characteristics exhibit strong nonlinear behaviour, trading
strategies employed are often substantially more dynamic. To account for the
dynamically changing and nonlinear exposure to market factors, Fung & Hsieh (1999,
2002, 2003) used certain options as additional asset based factors to better track and
understand trend following strategies, fixed income- and equity funds. Agarwal & Naik
(2002) apply this approach to a broad range of hedge fund styles, including the returns
of specific simple trading strategies as style factors. Their analysis proves that
nonlinearities are part of the true and dominant economical risk- and style factors.
Gupta et al. (2003) allow for quadratic terms in their factor analysis to investigate, e.g.,
market timing abilities of managers. Further approaches by Abernathy & Weisman
(2000) also included the return of fixed trading strategies as factors.

In most of the previous approaches of modeling hedge fund return characteristics, the
focus was on categorizing and grouping hedge funds, describing common underlying
risk factors like option type nonlinearities or on methods to evaluate performance
against more appropriate benchmarks obtained from the ABSF. To serve as a risk
management tool and to help construct valuable quantitative risk measures, an analysis
of hedge fund return characteristics has to move from answering the question “Are we
in trouble?” to being able to provide answers to the question “By how much are we in
trouble?”. It should be able to provide conditional predictive capabilities. While this was
not the main purpose of most previous models, providing the necessary conditional
predictions on an individual fund level will not always be achieved by buy and hold
strategies in underlying market factors plus a preselect set of nonlinear tradable
instruments and/or trading strategies.

1.2 Goals of the study
Methods of soft computing have been amply applied in the past to forecast market
behaviour, often with very mixed success. While trying to establish a functional
relationship between a set of market factors and the market behaviour itself may be a
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daunting task, using methods of soft computing to map market factors to conditional
predictions of a fund’s behaviour is footed on firmer grounds: Any trading strategy, be it
based on technical, fundamental or other rules applied within a fund, is in itself a
mapping from market factors to a fund’s conditional behaviour. In addition, trading
strategies applied by managers are substantially more stationary (in the mathematical
sense) than markets and thus lend themselves to be studied by methods of soft
computing. The degree of stationarity can be further increased, if trading rules are
“fuzzified”.
The current study proposes a Fuzzy Strategy Mapping (“FSM”), derived via integrated
neuro fuzzy- and genetic algorithms, mapping historic hedge fund and market data into
a dynamic replicating portfolio. The FSM aims at providing a conditional predictive
capability to serve as a basis for quantitative risk measures for single hedge funds or a
portfolio including hedge funds. It will have to go further than previous approaches by
not only analysing main - including nonlinear - factors, but also to include dynamic
strategies explaining hedge fund return characteristics. While the tendency of previous
research has been to search for a linear functional relationship between hedge fund
returns and market factors, using options as factors to account for nonlinearities and a
small set of preselected trading strategies to account for dynamic trading behaviour, the
FSM let’s the data determine which trading rules, strategies and market factors best
explain the fund’s return characteristics. In spirit, the method is similiar to option
pricing using soft computing, where the model learns the price of an option as well as
the exposures (the deltas) for an option replicating portfolio from historic market data
(see Hutchinson et al.).

1.3 General Features of the FSM
The FSM will distinguish between two types of market factors: Position factors, the
assets of the replicating portfolio and input factors which will determine the dynamic
exposure to the position factors. The input factors will encode the trading rules of the
replicating portfolio, but no positions will be taken in them. This distinction
corresponds to the way most money managers operate: The decision to enter a market
or trade an asset is based on information of a number of factors beyond the pure value
of that market or price of that asset. Technical trading rules use functions of the time
series of assets, balance sheet ratios drive the trading decisions of fundamentally
oriented equity funds and intermarket analysis mixes the information of several markets
to take positions. All of these examples give reason to distinguish a trading decision
from the pure position in the analysis and to allow within the model enough degrees of
freedom for the trading rules. In the FSM, the exposures can be determined using
fundamental factors, technical factors or simple rules, related to the history of asset
prices. With the flexible character of trading rules and strategies admitted to explain
hedge fund behaviour, the FSM can synthetically account for any option and any
dynamic portfolio insurance strategy. As a result, the FSM is able to provide the
necessary conditional predictive capabilities to serve as a basis for quantitative risk
measures.

The paper is organised as follows: The first parts of Section 2  will describe the FSM
and the construction of the replicating portfolio. The next part of Section 2 will describe
the learning mechanism. Section 3 briefly sketches an extension of the FSM to a general
nonlinear mapping, in which a nonlinear and fuzzy relationship between market factors
and the fund’s behaviour is established. Section 4 describes how risk measures based on
the FSM may be constructed. Section 5 provides some empirical results, analysing out of
sample capabilities of the FSM.
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2. Description of the FSM
2.1 Features of the FSM
The FSM will construct a replicating portfolio depending on: (i) The position factors,
which will constitute the assets of the portfolio, the positions, the portfolio will invest
in. (ii) The input factors, which will determine what the exposure to the individual
position factors will be, in which no positions will be taken.
For each position factor, a set of trading rules will be considered, each trading rule being
a function of some of the input factors and resulting in an exposure to that position
factor. The overall exposure to a position factor will be the sum of the exposures of all
trading rules for that position factor. The exposure produced by an individual rule will
be the product of two “weights”: A validity weight w, measuring how valid a rule is and
a leverage/direction weight c, giving a rule direction (long/short in the position factor)
and potential leverage.
The input- and position factors will be selected by employing a genetic search algorithm,
the trading rules will be derived using a simple neuro fuzzy approach. Both, the
selection of factors and the derivation of trading rules will be integrated into one
optimization mechanism. This has the advantage, that the true optimal factors for the
given setting will be found – factors will not be selected by their individual correlation
to the fund, but by their role and contribution in the optimisation process.
The FSM will find the optimal combination of trading rules and market factors,
optimising a given objective function. This objective function can be the standard mean
square deviation of hedge fund returns to FSM returns, potentially weighted to better
capture downside risk. Here, the objective function also includes a term penalising high
complexity.

2.2 The Replicating Portfolio
Consider a given pool of input- and position factors. For each position factor Bi, i=1 to
I, there will be R rules, each depending on the set of input factors Ak, k=1 to K. The
number of rules R will be kept constant for all position factors. Each rule rj will be of
multiplicity M(j), combining M(j) different conditions on the input factors via an “and”
link into rule rj and will quantify the statement:

If a function Fi,j,n of the input factors at time t is close to Zi,j,n for all n = 1
,...,M(j) i.e., Fi,j,1 is close to Zi,j,1 “and” Fi,j,2 is close to Zi,j,2  “and”..... Fi,j,M(j) is close
to Zi,j,M(j) then the exposure at time t to the i-th position factor is c(i,j) w(i,j,t).

The Z’s and c’s are parameters, which will be learned. The validity weights w contain
further parameters, the σ’s (see below). The F’s are pre processing functions of the input
factor time series and will here be chosen in advance, before the learning phase of the
model. For rule rj, the validity weight w relative to the position factor Bi at time t is
given by:

w(i,j,t) = exp(-½Σ n (Fijn(A1,..., AK , t) – Zijn)
2/σijn

2), (1)

where Ai = (Ai (s), s ≤ t ), j runs from 1 to R, i runs from 1 to I, the sum over n goes
from 1 to M(j).

Assuming observation of values and prices of the input factors occurs only at integer
times, the replicating portfolio P at time s ε (t,t+1] will then be:

P(s) = Σ i,j c(i,j) w(i,j,t) Bi (s)  (2)
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The complete set of parameters to be learned consists of the Z’s, σ’s and the c’s.

Since the functional form of the validity weights w limits them to vary between 0 and 1,
they are only a measure of how valid a rule is, making no statement about direction or
leverage. This is done by the c’s, which will determine with what size and what direction
a rule will enter.

Typically the preprocessing functions F in the validity weights w will be uni- or bivariate
functions of one or two input factors only, smoothing the time series of the input
factors like moving averages over small periodes, functions of moving averages or
“wavelet-smoothed” market data. If-then rules are inplemented by choosing the F’s as
Heavyside functions. A specific example is given in section 5.

The exposures will be kept constant during a period from t to t+1, so that the value of
the replicating portfolio at time t+1, just before the next adjustment of the validity
weight is:

P(t+1) = Σ i,j c(i,j) w(i,j,t) Bi(t+1) (3a)

= Σ i { Σ j c(i,j) w(i,j,t)} Bi(t+1)

= Σ i w* (i,t) Bi(t+1) (3b)

The portfolio return RP (t+1) over period [t, t+1] can be expressed as

RP (t+1) = {P(t+1) – P(t+)}/P(t+)

 = {Σ i w* (i,t) [Bi(t+1) - Bi(t)] }/Σ i w* (i,t) Bi(t)

 = Σ i v* (i,t) ARi(t+1) (3c)

where P(t+) reflects the value of the portfolio at time t, immediately after adjusting the
validity weight, ARi (t+1) is the absolute return or the price increment of factor Bi over
period [t, t+1] and

v* (i,t)  = w* (i,t)/ Σ i w* (i,t) Bi(t) (3d)

Notes:
 To account for staleness in hedge fund values, time shifts of the factors can be

exploited.
 By setting one of the position factors to constantly one, it is possible to obtain

market dependent alphas, i.e. it is possible to partition the fund’s alpha
according to different phases of markets.

 The replicating portfolio is constructed using the asset prices of the position
factors rather than the returns to account for changing proportions due to
market changes.

 The preprocessing functions F can also be subjected to an optimisation
procedure.
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To determine the parameters, the following error function will be minimised:

Eδ (T(t0)) = ½ Σt [RH (t) – RP (t)]
2 + δ(Σ i,j c(i,j)2) (4)

Where t runs over the training set T(t0) of historical data prior to the set time t0,
RH(t+1) is the hedge fund’s return over period [t, t+1] and δ is a monotone increasing
function in the sum of the squared leverage weights, to favor less complex portfolios.

Alternative error functions, like weighted squared errors, that penalise a misspecification
of negative returns more heavily, might be more appropriate for risk management
purposes and are easily implemented.

2.3 Parameter Determination – the Learning of the Model

The learning of the model consists of two parts: (i) For a given set of factors, the
optimal portfolio minimising the error (4), i.e., the optimal paramters (the Z’s, σ’s, c’s)
will have to be determined and (ii) the optimal set of factors (input and position) will
have to be chosen out of a pool of admissible factors. The learning mechanism
employed will integrate (i) and (ii) into one process, in which for a fixed set of factors,
the parameters will be determined by minimising (4) over a set of training data and then
select that set of factors, for which the optimal portfolio is “best”. The best set of
factors will be chosen by employing a genetic search, attaching a “quality” to each set of
factors and searching for the set of factors with the highest qualtiy. The quality for a set
of factors will reflect the error of its optimal portfolio, a measure of its ability to
generalise  over a set of validation data different from the training data and a penalty
function, that will lower the quality for large factor sets. The additional features of the
quality function beyond the pure error on the training set are necessary to avoid
overfitting and to further reduce complexity, as it is clear that a pure minimisation of (4)
over the training set can be bettered by simply adding more “independent” factors,
without improving the prediction capabilities. The quality of a given set of factors will
then be given by:

Q = - Eδ - V + φ(I+K) (5)

where Eδ and V are the errors over the training data according to (4) and validation data
respectively, φ is a monotone decreasing function in the number I+K of input- and
position factors used.

Fixed at the outset is the set of admissable factors ADM = {A1 , ..., AL , B1 , .. ,BN} with
input factors Ak ,k=1 to L; and position factors Bi ,i= 1 to N. Fixed is also the number
of generations, G, for the genetic search. Furthermore, a time t is set, beyond which the
FSM will produce conditional predictions, based on learning the data prior to t. The
combined mechanism of factor selection and parameter optimisation will be as follows 
(a summary follows below):

Step 1:
Let T(t) be the set of training dates ( t1 , t2 , ... tT ) ; ti ≤ t for all i, used at time t, over
which the parameters will be determined. V(t) will denote a set validation dates ( s1 , s2 ,
... sV ) ; sj ≤ t for all j with T(t) and V(t) being disjoint. Typically one will choose  
max(ti ;i = 1 to T) ≤ min(sj ; j = 1 to V), so that the validation period will follow
subsequent to the training period. V(t) will be used to see how well a portfolio would
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have done in predicting the fund’s returns out of sample before time t and will be used
in the selection of the factors.

Step 2:
A population, Pop(g), of subsets of input- and position factors for generation g=1, with
|Pop(g) |= p, is generated by identifying a subset of factors, Sn(g), for n= 1 to p, with
an L+N dimensional binary string [Sn(g)] ε {0,1}L+N , such that Sn ~ [Sn] according to:

1 if Ai is a chosen input factor of the n-th member Sn(g) of Pop(g)
for i= 1,...,L

[Sn(g)](i)={ 1 if Bi-L is a chosen position factor of the n-th member Sn(g) of
Pop(g) for i= L+1,...,L+N
0 otherwise

 (6)

i.e. each individual Sn(g) of the population Pop(g) is identified with that binary string
[Sn(g)], which has ones at the places representing the factors to be used and zeros at the
places representing factors not to be used.
[ • ] : Pop(g) → {0,1}L+N , denotes the natural injective embedding of Pop(g) into the set
of binary strings according to the definition above.
It will be convenient to write Sn(g) and [Sn(g)] as the concatenations (Sn(g,A) ,Sn(g,B))
and ([Sn(g,A)] ,[Sn(g,B)]) respectively with Sn(g,A) representing the set of input factors
used by the n-th member of Pop(g) and [Sn(g,A)] the L-dimensional binary substring
representing Sn(g,A). Respectively for Sn(g,B) and [Sn(g,B)].

Step 3:
For each set of factors Sn(g) of the current population Pop(g) , the optimal portfolio
P*

n(g) over T(t) will be constructed by determining the parameters (the Z’s, σ’s, c’s), that
minimize the error function Eδ (T(t)) given Sn(g) :

P*
n(g) = {Pn(g; Z, σ, c) s.th. (Z, σ, c) = argmin{ Eδ (T(t), Z, σ, c | Sn(g))} (7)

where Pn(g; Z, σ, c) is the portfolio as in (2), based on the factors Sn(g).

P*
n(g) will constitute the best – relative to the error function (4) - the factors Sn(g) can do

in replicating the fund returns over the training period T(t).
To determine the optimal portfolio P*

n(g) for each factor set Sn(g), the return of P*
n(g)

will be viewed as the output of a neural network, with input neuron vectors at time tk ε
T(t):

IN1(tk) = { Sn(g,A)(s); s ε Л(tk )}
IN2(tk) = { Sn(g,B)(s); s ε{ tk , tk-1}} (8)

where Sn(g,A)(s) and Sn(g,B)(s) denotes the set of input- and position factors of the n-th
member of Pop(g), all evaluated at time s. Л(tk ) is the collection of all dates s ≤ tk as
required by all preprocessing functions Fijn (the F’s are functions of the time series of
the input factors and will typically depend on the history path of a factor at time tk). IN1
& IN2 are both vectors, whose dimension depend on the number of factors of Sn(g) and
|Л|.
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The hidden neurons H(i, tk) of the network can be taken to be:

H(i, tk) = w* (i, tk) (9)

Where the w* are as in (3b).

The output neuron will be

O(tk) = R(P*
n(g)) as in (3c) (10)

The input neurons IN1 are processed in the hidden layer, i.e. they are variables of the
hidden neurons. The input neurons IN2 are directly passed to the output neuron, as can
be easily seen from the definition of the neurons and (3b) & (3c).
With this setting, the error function (4) will be minimised over the training set T(t),
using standard network learning methods (e.g. gradient descent backpropagation, see
Jang et al (1997)). That will produce for each factor set Sn(g) the optimal replicating
portfolios P*

n(g), n= 1,... p over the training period T(t). For each factor set Sn(g) a
quality Q(n) is attached as defined in (5):

Q(n) = - Eδ (n) – V(n) + φ(In+Kn) (11)

where Eδ (n) is the value of the error function (4) for the n-th optimal portfolio P*
n(g),

V(n) is the validation error (squared deviations of returns) on the validation set for
P*

n(g) and φ(In+Kn) is the penalty term on the number of input- and position factors of
Sn(g).

Step 4
Out of the current popoulation Pop(g) of factor sets, choose the individual Stop(g), with
highest quality attached:

Stop(g) = Sn(g) | n= argmax{Q(i); i= 1 to p} (12)

This will be the set of factors within the current population, which produces an optimal
portfolio, having the best mixture of fit to hedge fund returns over the training set,
predictive power on the validation set and least complexity, as expressed by (4) & (5).
Stop(g) will be used to build the population of the next generation: Set S1(g+1) = Stop(g).
Discard all other individuals Sn(g) ≠ Stop(g) of the current population of factor subsets.
Generate the next generation of individuals in the population by mutating the binary
string [Stop(g)] , representing the factors of the top performer, i.e. by randomly selecting
sites in the binary string [Stop(g)] and flipping those. The new population Pop(g+1) of
factors subsets will then be represented by the following set of binary strings:

[Pop(g+1)] = { [Stop(g)], Mi ([Stop(g)]); i= 1 to p-1}  (13)

where the Mi represent the mutation operators applied to the top performing string.

Step 5:
Go back to Step 3 and repeat the cycle for generations g= 2 to G. At the end of it, the
overall optimal portfolio (the optimal set of factors along with the optimal Z’s, σ’s, and
c’s) is obtained, i.e. one has established the optimal portfolio P* for the training set T(t):

P* = P*
top(G) (14)
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Summary
The learning mechanism thus works in two intertwined phases, it selects the factors to
be used by identifying a set of factors with a binary string or equivalently with a
“corner” of the unit cube in L+N dimensional space. For each corner of that cube, the
optimal replicating portfolio will be learned, by optimising the parameters. In this way,
an optimal replicating portfolio can be associated to each corner of the cube. The
genetic algorithm then searches throughout the corners of the cube for the best overall
portfolio with highest quality. The corner of the cube with the portfolio producing the
highest quality will then correspond to the optimal set of factors, such that its optimal
portfolio as in (2) will produce the lowest error on the combined training and validation
set, with limited complexity.

Remarks
 Given the sparse data for a lot of hedge funds, to further stabilize the

performance of the network, ensemble learning can be employed, that is, the
parameter optimisation will be run a number of times on different training sets,
generating an ensemble of replicating portfolios, see e.g. Breimann (1996). The
individual ensemble portfolios will be generated by bootstrapping the training
data set to produce “different” training sets. The optimisation on the different
training sets will produce varying sets of factors, parameters and therefore
varying replicating portfolios for the various ensemble members. The final
replicating portfolio will then be the simple arithmetic average over the
ensemble portfolios.

 To limit the genetic search, one can heuristically fix a number of reasonable and
obvious factors - like various equity/sector indices for long/short equity funds
– and will run the search on a smaller universe of 5-15 additional factors. In this
case, even an exhaustive search through all of the factor combinations makes
sense.

 In the set of training data, extreme or tail events for most of the market factors
are naturally included, given the market behaviour during the last several years.
In the future, it might be necessary to include a mechanism to ensure that tail
events for the important factors are included in the training set to capture stop
loss behaviour or other portfolio insurance type behaviour of the fund. Also, to
speed up adaption, it is sometimes advantageous to apply a “short memory”
effect to the training data, weighing recent data more heavily.

3. Nonlinear “Portfolios”
The FSM as a tradable portfolio is linear in the position factors and nonlinear in the
input factors. Having a replicating portfolio has the advantage of providing explanations
not only as to what factors drive the fund but also what tradable strategies could be
underlying the fund – the model has explanatory capabilites.
If explanations beyond which factors drive the fund’s behaviour are not important, it is
also possible to derive a nonlinear fuzzy functional relationship between all factors  and
the behaviour of the fund. For funds using mainly nonlinear instruments, like an actively
managed option portfolio, the nonlinear approach may sometimes provide good results
with less complexity than linear portfolios. This can be achieved by a simple alteration
of the previous model:
Instead of constructing a portfolio as in (2), one can output the following nonlinear
function of the factors, whereby no distinction between input and position factors will
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be taken. The preprocessing functions of the factor values will be normalized to lie in
[0,1]:

O(t) = 1/(1+exp(- Σ j c(j) w(j,t) )) (15)
with

w(j,t) = exp(-½Σ n (Fjn(B1,..., BK, t) – Zjn)
2/σjn

2), (16)

O(t) can then be trained against the sequential, normalized returns of the fund as before,
viewing the BK as input neurons and the w(j,t) as hidden neurons to a neural network
with output O(t).

This model can be interpreted as a conditioned perceptron, in which for a given (fuzzy)
condition of the market a certain nonlinear functional relation between factors and the
funds behaviour exists.

4. Risk Measures based on the FSM
Adequate quantitative risk measures for hedge funds are difficult to derive. The standard
mean-variance approach is inadaquate, as the true return distribution will deviate
substantially from the normal distribution. VAR or CVAR caculations could be based
on empirical distributions, but those are often meaningless given the short history of a
lot of (open) funds – for a fund with a 4 year monthly history, the 98% and 99%
confidence monthly VAR will produce the same number: The historic maximal monthly
drawdown. It is therefore natural to employ ABSFs or the position factors of the FSM,
to construct a more meaningful risk measure. However, to produce a meaningful risk
measure, the factor model used must have certain minimal conditional predictive power,
as provided by the FSM. For the FSM, one can be reasonably confident, that a
replicating portfolio like in (2) will closely resemble the fund’s behaviour based on the
outcome of the position factors. Specifically, as (3c) will closely resemble the fund
return over a period [t, t+1], the conditional distribution of the fund’s return, RH (t+1),
can be approximated by the distribution of

RP (t+1) = Σ i v* (i,t) ARi(t+1) (17)

and hence, can be constructed by the joint conditional distribution of the ARi(t+1),
which can be obtained by

 Using theoretical marginal distributions for the ARi(t+1) and using an
appropriate copula function to account for the correlation of the factors. This
correlation can be time dependent (see Nelson (1998) and Cherubini et al.
(2004)).

 Using the empirical joint distribution of the ARi(t+1) or using the empirical
marginal distributions and coupling them again with an appropriate copula
function.

These approximations of the distribution of fund’s returns provides a reasonable basis
for distribution based risk measures like VAR, CVAR etc.
Another approach to obtain a risk measure, is of course to use a family of scenario
assumptions on the factors and use the maximal drawdown of the FSM over all these
scenarios. This would produce a coherent risk measure, see Artzner et al. (1998).
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5. Empirical Results
This section describes the out of sample behaviour of the FSM applied to two cases:
The CSFB Tremont Composite Index and a long/short equity fund. For the index, the
period over which the out of sample behaviour of the FSM is analysed ranges from Juli
1994 to June 2004 and includes the “difficult” period from summer 1998 to summer
1999. The single fund was chosen to illustrate the performance of the FSM under a
major style drift in the fund: The manager of the fund changed during the considered
period and with it, the investment style changed rather dramatically, as a further
correlation/comovement analysis with factors and hedge fund styles would
demonstrate. The analysed period ranges from April 1999 to April 2004. For the CSFB
Tremont Composite Index and the single fund, out of sample predictions for the
monthly returns over the respective periods were generated and analysed.
The FSM used in this analysis was kept simple. The pool of admissible factors, out of
which the FSM selected, included: The S&P 500, Indices for small cap growth and value
stocks, indices for large cap growth and value stocks, Nikkei 225, Euro Stoxx 50, VIX,
BBB Credit Spreads, the Merrill Lynch High Yield Index, 10 yr US Government yield,
Euro, JPY and the CRB Index. For all position factors only rules depending on that
position factor as input factor were considered. For each factor, at most six rules were
allowed, each having a multiplicity, M(j), of one. The factor preprocessing functions for
all rules was:

Fj(Bi(t)) = Bi (t)/MAVn(t,Bi) (18)

where MAVn(t,Bi) is the n-period moving average of Bi , with n = 3 to 6.
Further improvements can be achieved by adjusting the pool of factors and/or the
preprocessing functions to allow for greater flexibility and to account for specifics of a
given fund.
Note: If – like in this case – only one preprocessing function is used, care has to be
applied initializing the weights for the neural net learning. Specifically the Z’s should be
“spaced”, else they might converge to the same value during learning, resulting in an
unefficient double up of rules.

The FSM was initially trained to predict the first monthly return following immediately
the training period plus the validation period. The validation period was taken to be one
month only, immediately following the training period and preceding the month to be
predicted. Monthly adaption to new data was used to generate the entire sequence of
monthly returns. The linear correlation between the actual returns and the out of sample
predictions was 85% for the index over the period Juli 1994 to June 2004 and 72% for
the single fund over the period April 1999 to April 2004. The Spearman Rank
Correlation was used in conjunction with the linear correlation to account for more
general, nonlinear comovements of the two return series and turned out to be 82% for
the index and 63% for the single fund over the respective periods. The Kolmogoroff-
Smirnov Test was employed to test for the null hypothsis of equality of the empirical
distribution functions. The test for the index prevailed up to α=0.41, for the single fund
up to 0.14, strongly emphasising the similiarity of the two distribution functions and
thus highlighting the conditional predictive capability, even of a simple FSM. Exhibit 1
shows the results of the actual monthly returns of the Index versus the out of sample
returns of the FSM. Exhibit 2 shows the empirical distribution function of the monthly
index returns vs the empirical distribution function of the out of sample FSM predicted
returns. Exhibit 3 shows the results of the actual monhtly returns of the single fund vs.
the out of sample monthly FSM returns.
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6. Conclusions
While for a description of qualitative hedge fund behaviour simpler methods may
suffice, to be able to quantify future hedge fund behaviour a further sharpening of
previous methods is required to provide the needed predictive power. Letting the data
determine the instruments, the trading rules and the degree of nonstationarity, the FSM
constructs a replicating portfolio that depends in a nonlinear and dynamic way on
market factors. It does so by distinguishing between factors in which positions will be
taken and factors purely serving the decision process for trading, allowing for a flexible
formulation of trading rules that determine the exposures to assets. By learning and
adapting to both, the dynamics and the optimal factor set, in an integrated way, the FSM
is able to capture complex trading behaviour and adjusts quickly to shifts in trading
paradigms. In addition, constructing a replicating portfolio, the FSM has also substantial
explanatory power. The predictive capabilites of the FSM might therfore prove useful in
building efficient and reliable risk measures. 
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Appendix 1
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Exhibit 1: Actual monthly returns of the CSFB Tremont Composite Index vs. monthly, out of
sample FSM returns during the period July 1994 – June 2004.
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Exhibit 2: Distribution function of the actual monthly returnsof the CSFB Tremont Composite
Index vs. Distribution function of the monthly out of sample FSM returns during the period July 1994
– June 2004.
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Exhibit 3: Actual monthly returns of the single long/short equity fund vs. monthly, out of sample
FSM returns during the period April 1999 – April 2004.
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